1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
getModelComponents <- function(m, analytic) UseMethod("getModelComponents")
getModelComponents.lme <-
function(m, analytic = TRUE) {
model <- list()
model$df <- NULL
X <- model.matrix(formula(m),m$data)
n <- nrow(X)
Z <- as.matrix(get_Z(m))
theta <- get_theta(m)
Lambdat <- get_LambdaT(m)$LambdaT
D <- get_LambdaT(m)$D
Lambda <- t(Lambdat)
model$Wlist <- list()
model$eWelist <- list()
# L <- get_L(m)
sig2 <- sigma(m)^2
R <- get_R(m) / sig2 # definition according to derivation of bc with weights
# w <- sig2 / diag(get_R(m))
Rinv <- solve(R)
model$R <- R
Zt <- t(Z)
#Dinv <- solve(get_LambdaT(m)$D)
V0inv <- solve(Matrix(Z %*% D %*% Zt + get_R(m))/sig2)
RX <- get_RX(m)
A <- V0inv - crossprod(crossprod(X %*% solve(RX), V0inv))
y <- as.vector(getResponse(m))
e <- residuals(m)
## prepare list of derivative matrices W_j
ind <- get_Lind(m)
len <- rep(0, length(Lambda@x))
for (s in 1:length(theta)) {
# model$Wlist <- lapply(theta, function(s){
LambdaS <- Lambda
LambdaSt <- Lambdat
LambdaS@x <- LambdaSt@x <- len
LambdaS@x[which(ind == s)] <- LambdaSt@x[which(ind == s)] <- 1
diagonal <- diag(LambdaS)
diag(LambdaS) <- diag(LambdaSt) <- 0
Ds <- LambdaS + LambdaSt
diag(Ds) <- diagonal
model$Wlist[[s]] <- tcrossprod(Z %*% Ds, Z)
model$eWelist[[s]] <- as.numeric(e %*% model$Wlist[[s]] %*% e)
# model$Wlist[[s]] <- model$Wlist[[s]]/norm(model$Wlist[[s]], type = "F")
}
## Write everything into a return list
model$X <- X
model$n <- n
model$theta <- theta
model$Z <- Z
model$Lambda <- Lambda
model$Lambdat <- Lambdat
model$V0inv <- V0inv
model$A <- A
if (analytic) {
model$B <- matrix(0, length(theta), length(theta))
} else {
stop("Numerical Hessian not calculated in nlme::lme objects!")
# model$B <- m@optinfo$derivs$Hessian
}
model$C <- matrix(0, length(theta), n)
model$y <- y
model$e <- e
model$tye <- as.numeric(crossprod(y, e))
model$isREML <- m$method == "REML"
return(model)
}
getModelComponents.merMod <-
function(m, analytic) {
# A function that calculates all components needed to calculate the bias
# correction as in Greven & Kneib (2010)
#
# Args:
# m = Object of class lmerMod. Obtained by lmer()
# analytic = FALSE if the numeric hessian of the (restricted) marginal log-
# likelihood from the lmer optimization procedure should be used.
# Otherwise (default) TRUE, i.e. use a analytical version that
# has to be computed.
#
# Returns:
# model = List of components needed to calculate the bias correction
#
model <- list()
model$df <- NULL
X <- getME(m, "X")
n <- nrow(X)
Z <- getME(m, "Z")
theta <- getME(m, "theta")
Lambda <- getME(m, "Lambda")
Lambdat <- getME(m, "Lambdat")
model$Wlist <- list()
model$eWelist <- list()
L <- getME(m, "L")
w <- weights(m)
if(any(w!=1)){
model$R <- diag(1/w)
Rinv <- diag(w)
D0inv <- solve(tcrossprod(Lambda))
V0inv <- Rinv - crossprod(Rinv,Z) %*% solve(D0inv + t(Z)%*%Rinv%*%Z) %*% crossprod(Z,Rinv)
}else{
I_v0inv <- Matrix(0, n, n, sparse = TRUE)
diag(I_v0inv) <- 1
V0inv <- I_v0inv - crossprod(solve(L, system = "L") %*%
solve(L, Lambdat, system = "P") %*% t(Z))
}
# P <- diag(rep(1, n)) - X %*% chol2inv(getME(m, "RX")) %*% crossprod(X, V0inv)
## pre calculate matrices for faster computation
# A <- crossprod(P, V0inv)
A <- V0inv - crossprod(crossprod(X %*% solve(getME(m, "RX")), V0inv))
y <- getME(m, "y")
e <- y - getME(m, "mu")
## prepare list of derivative matrices W_j
ind <- getME(m, "Lind")
len <- rep(0, length(Lambda@x))
for(s in 1:length(theta)) {
# model$Wlist <- lapply(theta, function(s){
LambdaS <- Lambda
LambdaSt <- Lambdat
LambdaS@x <- LambdaSt@x <- len
LambdaS@x[which(ind == s)] <- LambdaSt@x[which(ind == s)] <- 1
diagonal <- diag(LambdaS)
diag(LambdaS) <- diag(LambdaSt) <- 0
Ds <- LambdaS + LambdaSt
diag(Ds) <- diagonal
model$Wlist[[s]] <- tcrossprod(Z %*% Ds, Z)
model$eWelist[[s]] <- as.numeric(e %*% model$Wlist[[s]] %*% e)
# model$Wlist[[s]] <- model$Wlist[[s]]/norm(model$Wlist[[s]], type = "F")
}
## Write everything into a return list
model$X <- X
model$n <- n
model$theta <- theta
model$Z <- Z
model$Lambda <- Lambda
model$Lambdat <- Lambdat
model$V0inv <- V0inv
model$A <- A
if(analytic) {
model$B <- matrix(0, length(theta), length(theta))
} else {
model$B <- m@optinfo$derivs$Hessian
}
model$C <- matrix(0, length(theta), n)
model$y <- y
model$e <- e
model$tye <- as.numeric(crossprod(y, e))
model$isREML <- isREML(m)
return(model)
}
|