1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
#' Function to stepwise select the (generalized) linear mixed model
#' fitted via (g)lmer() or (generalized) additive (mixed) model
#' fitted via gamm4() with the smallest cAIC.
#'
#'
#' The step function searches the space of possible models in a greedy manner,
#' where the direction of the search is specified by the argument
#' direction. If direction = "forward" / = "backward",
#' the function adds / exludes random effects until the cAIC can't be improved further.
#' In the case of forward-selection, either a new grouping structure, new
#' slopes for the random effects or new covariates modeled nonparameterically
#' must be supplied to the function call.
#' If direction = "both", the greedy search is alternating between forward
#' and backward steps, where the direction is changed after each step
#'
#'@param object object returned by \code{[lme4]{lmer}}, \code{[lme4]{glmer}} or
#'\code{[gamm4]{gamm4}}
#'@param numberOfSavedModels integer defining how many additional models to be saved
#'during the step procedure. If \code{1} (DEFAULT), only the best model is returned.
#'Any number \code{k} greater \code{1} will return the \code{k} best models.
#'If \code{0}, all models will be returned (not recommended for larger applications).
#'@param groupCandidates character vector containing names of possible grouping variables for
#'new random effects. Group nesting must be specified manually, i.e. by
#'listing up the string of the groups in the manner of lme4. For example
#'\code{groupCandidates = c("a", "b", "a/b")}.
#'@param slopeCandidates character vector containing names of possible new random effects
#'@param fixEfCandidates character vector containing names of possible (non-)linear fixed effects
#'in the GAMM; NULL for the (g)lmer-use case
#'@param direction character vector indicating the direction ("both","backward","forward")
#'@param numberOfPermissibleSlopes how much slopes are permissible for one grouping variable
#'@param trace logical; should information be printed during the execution of stepcAIC?
#'@param steps maximum number of steps to be considered
#'@param keep list($fixed,$random) of formulae; which splines / fixed (fixed) or
#'random effects (random) to be kept during selection; specified terms must be
#'included in the original model
#'@param numCores the number of cores to be used in calculations;
#'parallelization is done by using \code{parallel::mclapply}
#'@param data data.frame supplying the data used in \code{object}. \code{data} must also include
#'variables, which are considered for forward updates.
#'@param returnResult logical; whether to return the result (best model and corresponding cAIC)
#'@param calcNonOptimMod logical; if FALSE, models which failed to converge are not considered
#'for cAIC calculation
#'@param bsType type of splines to be used in forward gamm4 steps
#'@param allowUseAcross allow slopes to be used in other grouping variables
#'@param allowCorrelationSel logical; FALSE does not allow correlations of random effects
#'to be (de-)selected (default)
#'@param allowNoIntercept logical; FALSE does not allow random effects without random intercept
#'@param digits number of digits used in printing the results
#'@param printValues what values of \code{c("cll", "df", "caic", "refit")}
#'to print in the table of comparisons
#'@param ... further options for cAIC call
#'@section Details:
#'
#' Note that the method can not handle mixed models with uncorrelated random effects and does NOT
#' reduce models to such, i.e., the model with \code{(1 + s | g)} is either reduced to
#' \code{(1 | g)} or \code{(0 + s | g)} but not to \code{(1 + s || g)}.
#' @return if \code{returnResult} is \code{TRUE}, a list with the best model \code{finalModel},
#' \code{additionalModels} if \code{numberOfSavedModels} was specified and
#' the corresponding cAIC \code{bestCAIC} is returned.
#'
#' Note that if \code{trace} is set to \code{FALSE} and \code{returnResult}
#' is also \code{FALSE}, the function call may not be meaningful
#' @author David Ruegamer
#' @export
#' @import parallel
#' @importFrom stats as.formula dbinom dnorm dpois family
#' formula glm lm model.frame model.matrix
#' predict reformulate simulate terms
#' @importFrom utils combn
#' @importFrom stats4 logLik
#' @examples
#'
#' (fm3 <- lmer(strength ~ 1 + (1|sample) + (1|batch), Pastes))
#'
#' fm3_step <- stepcAIC(fm3, direction = "backward", trace = TRUE, data = Pastes)
#'
#' fm3_min <- lm(strength ~ 1, data=Pastes)
#'
#' fm3_min_step <- stepcAIC(fm3_min, groupCandidates = c("batch", "sample"),
#' direction="forward", data=Pastes, trace=TRUE)
#' fm3_min_step <- stepcAIC(fm3_min, groupCandidates = c("batch", "sample"),
#' direction="both", data=Pastes, trace=TRUE)
#' # try using a nested group effect which is actually not nested -> warning
#' fm3_min_step <- stepcAIC(fm3_min, groupCandidates = c("batch", "sample", "batch/sample"),
#' direction="both", data=Pastes, trace=TRUE)
#'
#' Pastes$time <- 1:dim(Pastes)[1]
#' fm3_slope <- lmer(data=Pastes, strength ~ 1 + (1 + time | cask))
#'
#' fm3_slope_step <- stepcAIC(fm3_slope,direction="backward", trace=TRUE, data=Pastes)
#'
#'
#'
#' fm3_min <- lm(strength ~ 1, data=Pastes)
#'
#' fm3_min_step <- stepcAIC(fm3_min,groupCandidates=c("batch","sample"),
#' direction="forward", data=Pastes,trace=TRUE)
#'
#'
#'
#' fm3_inta <- lmer(strength ~ 1 + (1|sample:batch), data=Pastes)
#'
#' fm3_inta_step <- stepcAIC(fm3_inta,groupCandidates=c("batch","sample"),
#' direction="forward", data=Pastes,trace=TRUE)
#'
#' fm3_min_step2 <- stepcAIC(fm3_min,groupCandidates=c("cask","batch","sample"),
#' direction="forward", data=Pastes,trace=TRUE)
#'
#' fm3_min_step3 <- stepcAIC(fm3_min,groupCandidates=c("cask","batch","sample"),
#' direction="both", data=Pastes,trace=TRUE)
#'
#' \dontrun{
#' fm3_inta_step2 <- stepcAIC(fm3_inta,direction="backward",
#' data=Pastes,trace=TRUE)
#' }
#'
#' ##### create own example
#'
#'
#' na <- 20
#' nb <- 25
#' n <- 400
#' a <- sample(1:na,400,replace=TRUE)
#' b <- factor(sample(1:nb,400,replace=TRUE))
#' x <- runif(n)
#' y <- 2 + 3 * x + a*.02 + rnorm(n) * .4
#' a <- factor(a)
#' c <- interaction(a,b)
#' y <- y + as.numeric(as.character(c))*5
#' df <- data.frame(y=y,x=x,a=a,b=b,c=c)
#'
#' smallMod <- lm(y ~ x)
#'
#' \dontrun{
#' # throw error
#' stepcAIC(smallMod, groupCandidates=c("a","b","c"), data=df, trace=TRUE, returnResult=FALSE)
#'
#' smallMod <- lm(y ~ x, data=df)
#'
#' # throw error
#' stepcAIC(smallMod, groupCandidates=c("a","b","c"), data=df, trace=TRUE, returnResult=FALSE)
#'
#' # get it all right
#' mod <- stepcAIC(smallMod, groupCandidates=c("a","b","c"),
#' data=df, trace=TRUE,
#' direction="forward", returnResult=TRUE)
#'
#' # make some more steps...
#' stepcAIC(smallMod, groupCandidates=c("a","b","c"), data=df, trace=TRUE,
#' direction="both", returnResult=FALSE)
#'
#' mod1 <- lmer(y ~ x + (1|a), data=df)
#'
#' stepcAIC(mod1, groupCandidates=c("b","c"), data=df, trace=TRUE, direction="forward")
#' stepcAIC(mod1, groupCandidates=c("b","c"), data=df, trace=TRUE, direction="both")
#'
#'
#'
#' mod2 <- lmer(y ~ x + (1|a) + (1|c), data=df)
#'
#' stepcAIC(mod2, data=df, trace=TRUE, direction="backward")
#'
#' mod3 <- lmer(y ~ x + (1|a) + (1|a:b), data=df)
#'
#' stepcAIC(mod3, data=df, trace=TRUE, direction="backward")
#'
#' }
#'
stepcAIC <- function(object,
numberOfSavedModels = 1,
groupCandidates = NULL,
slopeCandidates = NULL,
fixEfCandidates = NULL,
numberOfPermissibleSlopes = 2,
allowUseAcross = FALSE,
allowCorrelationSel = FALSE,
allowNoIntercept = FALSE,
direction = "backward",
trace = FALSE,
steps = 50,
keep = NULL,
numCores = 1,
data = NULL,
returnResult = TRUE,
calcNonOptimMod = TRUE,
bsType = "tp",
digits = 2,
printValues = "caic",
...)
{
#######################################################################
########################## pre-processing #############################
#######################################################################
if(!is.null(data)){
data <- get(deparse(substitute(data)), envir = parent.frame())
if(inherits(object, c("lmerMod", "glmerMod")))
attr(data, "orgname") <- as.character(object@call[["data"]]) else
attr(data, "orgname") <- as.character(object$call[["data"]])
}else if(inherits(object, c("lmerMod", "glmerMod"))){
data <- get(deparse(object@call[["data"]]), envir = parent.frame())
attr(data, "orgname") <- as.character(object@call[["data"]])
}else{
stop("argument data must be supplied!")
}
possible_predictors <- colnames(data)
### build nesting in groupCandidates
nestCands <- groupCandidates[grep("/", groupCandidates)]
nestCands <- nestCands[!nestCands %in% possible_predictors]
for(nc in nestCands){
# check if really nested
ncc <- trimws(strsplit(nc, "/")[[1]])
if(!isNested(data[,ncc[1]], data[,ncc[2]])){
warning(paste0("Dropping incorrect nesting group ", nc, " from groupCandidates."))
}else{
groupCandidates <- unique( c(groupCandidates, allNestSubs(nc)) )
}
groupCandidates <- setdiff(groupCandidates, nc)
}
# intaCands <- groupCandidates[grep(":", groupCandidates)]
# if(length(intaCands) > 0) intaCands <- intaCands[!intaCands %in% possible_predictors]
# for(ic in intaCands){
# sepIc <- trimws(strsplit(ic, ":")[[1]])
# if(cor(sapply(data[,sepIc], as.numeric))==1)
# stop(paste0("Interaction of ", sepIc, " not meaningful."))
# }
existsNonS <- FALSE
### check if gamm4-call
if(is.list(object) & length(object)==2 & all(c("mer","gam") %in% names(object))){
if(allowUseAcross | !is.null(slopeCandidates))
stop("allowUseAcross and slopeCandidates are not permissible for gamm4-objects!")
ig <- mgcv::interpret.gam(object$gam$formula)
existsNonS <- length(ig$smooth.spec)<length(ig$fake.names)
if( !is.null(fixEfCandidates) ) stopifnot( fixEfCandidates %in% possible_predictors )
### check for dot in formula
if(grepl("\\s{1}\\.{1}\\s{1}", as.character(object$mer@call)[2]))
{
stop("Abbrevation of variable names via dot in formula is not supported.")
}
}else{ # not gamm4, but potentially a lm / glm object
if( !is.null(groupCandidates) ) stopifnot( all ( groupCandidates %in% possible_predictors ) |
( unlist(strsplit(groupCandidates, ":")) %in%
possible_predictors ) )
if( !is.null(slopeCandidates) ) stopifnot( slopeCandidates %in% possible_predictors )
### check for dot in formula
if(inherits(object, "merMod")){
if(grepl("\\s{1}\\.{1}\\s{1}", as.character(object@call)[2])){
fullform <- terms(formula(object), data=object@frame)
fullform <- as.formula(Reduce(paste, deparse(fullform)))
object <- update(object, formula = fullform)
}
}else if(any(class(object)%in%c("lm","glm"))){
# formula(object) should already give the desired result
}else{
stop("Model class not supported.")
}
}
if(!returnResult & numberOfSavedModels != 1)
warning("No result will be returned if returnResult==FALSE.")
# define everything needed to save further models
if(numberOfSavedModels==1) additionalModels <- NULL else{
additionalModels <- list()
additionalCaics <- c()
}
if(numberOfSavedModels==0) numberOfSavedModels <- Inf
if(numberOfPermissibleSlopes < 1)
stop("numberOfPermissibleSlopes must be greater or equal to 1")
# redefine numberOfPermissibleSlopes as intercepts will also count as slopes
numberOfPermissibleSlopes <- numberOfPermissibleSlopes + 1
#######################################################################
########################## entry step #############################
#######################################################################
# -> get cAIC of input model
if(inherits(object, c("lmerMod", "glmerMod")) | "mer"%in%names(object)){
timeBefore <- Sys.time()
cAICofMod <- tryCatch(cAIC(object,...), error = function(e){
cat("\n\nThe cAIC of the initial model can not be calculated. Continue Anyway?")
readline("If so, type 'y': ")
})
if(!is.numeric(cAICofMod$caic) && cAICofMod=="y"){
cAICofMod <- Inf
}else if(!is.numeric(cAICofMod$caic) && cAICofMod!="y") return(NULL)
refit <- cAICofMod$new
# if(refit==1 & inherits(object, c("lmerMod", "glmerMod")))
# object <- cAICofMod$reducedModel
cAICofMod <- cAICofMod$caic
timeForCalc <- Sys.time() - timeBefore
}else if(any(class(object)%in%c("lm","glm"))){
# ll <- getGLMll(object)
# bc <- attr(logLik(object),"df")
cAICofMod <- cAIC(object)$caic #-2*ll + 2*bc
if(direction=="backward") stop("A simple (generalized) linear model can't be reduced!")
}else{
stop("Class of object is not known")
}
# check if call is inherently consistent
if(!(
direction=="backward" |
( direction %in% c("forward","both") &
( !is.null(groupCandidates) | !is.null(slopeCandidates) | !is.null(fixEfCandidates) )
) |
( direction %in% c("forward","both") &
is.null(groupCandidates) & is.null(slopeCandidates) & is.null(fixEfCandidates) &
( allowUseAcross | existsNonS ) )
))
stop("Can not make forward steps without knowledge of additional random effect covariates.")
if( direction=="backward" & !( is.null(groupCandidates) & is.null(slopeCandidates) &
is.null(fixEfCandidates) )
)
warning("Ignoring variables in group-/slopeCandidates or fixEfCandidates for backward steps.")
#######################################################################
########################## (end) #############################
#######################################################################
#######################################################################
####################### iteratively fitting ###########################
#######################################################################
# indicator to break while loop
stepsOver <- FALSE
# indicator for direction=="both"
dirWasBoth <- ifelse( direction=="both", TRUE, FALSE )
# indicator for improvement in direction=="both" - step
improvementInBoth <- TRUE
# indicator for check if step procedure didnt yield better
# results compared to the previous step
equalToLastStep <- FALSE
# change direction to either forward or backward
direction <- ifelse( direction%in%c("both","forward"),"forward","backward" )
# get the initial number of steps
stepsInit <- steps
###################################################################
####################### iterative part ############################
###################################################################
if(trace){
cat("Starting stepwise procedure...")
cat("\n_____________________________________________\n")
cat("_____________________________________________\n")
}
# try to improve the model as long as stepsOver==FALSE
while(!stepsOver){
# get all components needed for stepping procedure
comps <- getComponents(object)
newSetup <- if(direction=="forward"){
makeForward(comps=comps,
slopeCandidates=slopeCandidates,
groupCandidates=groupCandidates,
fixEfCandidates=fixEfCandidates,
nrOfCombs=numberOfPermissibleSlopes,
allowUseAcross=allowUseAcross,
allowCorrelationSel=allowCorrelationSel,
bsType=bsType,
keep=keep)
}else{
makeBackward(comps=comps,
keep=keep,
allowCorrelationSel=allowCorrelationSel,
allowNoIntercept=allowNoIntercept)
}
if(all(sapply(newSetup, is.null)) & direction=="forward")
{
if(trace){
cat("\nBest model: ", makePrint(object), "\ncAIC:",
cAICofMod, "\n_____________________________________________\n")
# cat("\nModel can not be further extended.")
if(refit==1) cat("\nBest model should be refitted due to zero variance components.\n")
}
return(list(finalModel=object,
additionalModels=NULL,
bestCAIC=cAICofMod)
)
}
########################### printing ##############################
if(trace) {
cat("\nStep ",stepsInit-steps+1," (",direction,"): cAIC=",
format(round(cAICofMod, 4)), "\n",
"Best model so far:\n", makePrint(object), "\n", sep = "")
utils::flush.console()
}
###################################################################
steps = steps - 1
if(trace) cat("New Candidates:\n\n")
newSetup <- mergeChanges(initialParts=comps, listParts=newSetup)
### ( print ) ###
if(trace & !is.null(newSetup)) cat("Calculating cAIC for",
length(newSetup),
"model(s) ...\n")
#############
### calculate all other models and cAICs
tempRes <- if(!is.null(newSetup)){
calculateAllCAICs(newSetup=newSetup,
modelInit=object,
numCores=numCores,
data=data,
calcNonOptimMod=calcNonOptimMod,
nrmods=numberOfSavedModels,
...)
}
##############
if(is.list(tempRes) & !is.null(tempRes$message)){ # gamm4 with error
warning(paste0("There are zero variance components.\n", tempRes$message))
if(returnResult){
return(list(finalModel=object,
additionalModels=additionalModels,
bestCAIC=cAICofMod)
)
}else{
return(invisible(NULL))
}
}
### get performance
aicTab <- as.data.frame(tempRes$aicTab)
### ( print ) ###
if (trace) {
cat("\n")
print(aicTab[with(aicTab,order(-caic)), c("models",printValues)],
row.names = FALSE, digits = digits)
cat("\n_____________________________________________\n")
cat("_____________________________________________\n")
utils::flush.console()
}
caicsres <- attr(tempRes$bestMod, "caic")
bestModel <- tempRes$bestMod[[which.min(caicsres)]]
if(numberOfSavedModels > 1 & length(tempRes$bestMod) > 0){
additionalModels <- c(additionalModels, tempRes$bestMod)
# check for duplicates among models
duplicates <- duplicatedMers(additionalModels)
# remove duplicates
additionalModels <- additionalModels[!duplicates]
additionalCaics <- c(additionalCaics, caicsres)[!duplicates]
bestCaics <- order(additionalCaics, decreasing = FALSE)[
1:min(numberOfSavedModels, length(additionalCaics))
]
additionalModels <- additionalModels[bestCaics]
additionalCaics <- additionalCaics[bestCaics]
}
indexMinCAIC <- which.min(aicTab$caic)
minCAIC <- ifelse(length(indexMinCAIC)==0, Inf, aicTab$caic[indexMinCAIC])
if(minCAIC < cAICofMod) refit <- tempRes$aicTab[indexMinCAIC,"refit"]
keepList <- list(random=interpret.random(keep$random),gamPart=NULL)
if(!is.null(keep$fixed)) keepList$gamPart <- mgcv::interpret.gam(keep$fixed)
###############################################################################
###############################################################################
############################# - decision part - ###############################
###############################################################################
###############################################################################
if( minCAIC==Inf ){
if(dirWasBoth){
direction <- ifelse( direction=="forward", "backward", "forward" )
improvementInBoth <- FALSE
}else{
stepsOver <- TRUE
bestModel <- object
minCAIC <- cAICofMod
}
}else if(
( minCAIC <= cAICofMod & !dirWasBoth & direction=="backward" &
any(class(bestModel)%in%c("glm","lm")) )
# if backward step procedure reached (g)lm
|
( minCAIC <= cAICofMod & !dirWasBoth & direction=="backward" &
is.logical(all.equal(newSetup[[which.min(aicTab$caic)]],keepList)) )
# if backward step procedure reached minimal model defined by keep statement
|
( minCAIC <= cAICofMod & all( is.na(newSetup) ) )
# if there is a new better model, which is a (g)lm
# stop stepping and return bestModel / bestCAIC
){
stepsOver <- TRUE
}else if( minCAIC <= cAICofMod & all(!is.na(newSetup) & !equalToLastStep ) ){
if( minCAIC == cAICofMod ) equalToLastStep <- TRUE
# if there is a new better model and the new model is not a (g)lm
# update the best model
if( steps==0 | length(newSetup)==1 ) stepsOver <- TRUE else{
cAICofMod <- minCAIC
object <- bestModel
improvementInBoth <- TRUE # set TRUE as performance improved
# (only relevant for direction=="both")
if(dirWasBoth) direction <- ifelse( direction=="forward", "backward", "forward" )
}
}else if( minCAIC <= cAICofMod & equalToLastStep & improvementInBoth ){
# there is another best model
cAICofMod <- minCAIC
object <- bestModel
improvementInBoth <- FALSE
if(dirWasBoth) direction <- ifelse( direction=="forward", "backward", "forward" )
}else if( minCAIC > cAICofMod & ( steps==0 | length(newSetup)==1 ) & !dirWasBoth ){
# if there is no better model, but all the required steps were done or
# there is no more combination of random effects to check or the
# "both"-stepping was not successful in the previous turn, stop
# stepping and return the current model or previous model
stepsOver <- TRUE
minCAIC <- cAICofMod
bestModel <- object
}else if( minCAIC >= cAICofMod & dirWasBoth & improvementInBoth ){
# if there is no new better model, but direction was "both" and
# the step before the last step was a successfully forward / backward step
direction <- ifelse( direction=="forward", "backward", "forward" )
improvementInBoth <- FALSE
# set to FALSE to prevent unnecessary steps if the current model is the best model
}else{
# in case when the procedure did all steps / no more random effects are available
# but the last step did not yield better performance or the last step had an equal cAIC
stepsOver <- TRUE
if(refit==0) bestModel <- object
minCAIC <- cAICofMod
}
} # while end
###############################################################################
############################ return result ###################################
###############################################################################
if(minCAIC==Inf){
if(trace) cat("\nNo best model found.")
}else{
if(trace) cat("\nBest model:\n", makePrint(bestModel),",\n",
"cAIC:", minCAIC, "\n_____________________________________________\n")
#if(refit==1) cat("\nBest model should be refitted due to zero variance components.\n")
}
if(returnResult){
if(!is.null(additionalModels)){
additionalModels <- additionalModels[-1]
attr(additionalModels, "cAICs") <- additionalCaics[-1]
}
return(list(finalModel=bestModel,
additionalModels=additionalModels,
bestCAIC=minCAIC)
)
}else{
return(invisible(NULL))
}
}
|