1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
|
\name{canocor}
\alias{canocor}
\title{Canonical correlation analysis}
\description{
\code{canocor} performs canonical correlation analysis on the
basis of the standardized variables and stores extensive output
in a list object.
}
\usage{
canocor(X, Y)
}
\arguments{
\item{X}{ a matrix containing the X variables }
\item{Y}{ a matrix containing the Y variables }
}
\details{
\code{canocor} computes the solution by a singular value
decomposition of the transformed between set correlation matrix.
}
\value{
Returns a list with the following results
\item{ccor }{ the canonical correlations }
\item{A }{ canonical weights of the x variables }
\item{B }{ canonical weights of the y variables }
\item{U }{ canonical x variates }
\item{V }{ canonical y variates }
\item{Fs }{ biplot markers for x variables (standard coordinates) }
\item{Gs }{ biplot markers for y variables (standard coordinates) }
\item{Fp }{ biplot markers for x variables (principal coordinates) }
\item{Gp }{ biplot markers for y variables (principal coordinates) }
\item{fitRxy }{ goodness of fit of the between-set correlation matrix }
\item{fitXs }{ adequacy coefficients of x variables }
\item{fitXp }{ redundancy coefficients of x variables }
\item{fitYs }{ adequacy coefficients of y variables }
\item{fitYp }{ redundancy coefficients of y variables}
}
\references{
Hotelling, H. (1935) The most predictable criterion. Journal of Educational
Psychology (26) pp. 139-142.
Hotelling, H. (1936) Relations between two sets of variates. Biometrika
(28) pp. 321-377.
Johnson, R. A. and Wichern, D. W. (2002) Applied Multivariate Statistical Analysis.
New Jersey: Prentice Hall.
}
\author{ Jan Graffelman \email{jan.graffelman@upc.edu} }
\seealso{\code{\link{cancor}}}
\examples{
set.seed(123)
X <- matrix(runif(75),ncol=3)
Y <- matrix(runif(75),ncol=3)
cca.results <- canocor(X,Y)
}
\keyword{multivariate}
|