File: CalibrationGuide.Rnw

package info (click to toggle)
r-cran-calibrate 1.7.7-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 628 kB
  • sloc: makefile: 2
file content (777 lines) | stat: -rw-r--r-- 34,395 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
\documentclass[a4paper]{article}

% \VignetteIndexEntry{A R package for calibration of biplot and scatterplot axis.}
% \VignetteDepends{graphics,stats}
% \VignetteKeyword{multivariate}

% Documentation for the Calibrate package

\usepackage[english]{babel}
\usepackage{Sweave}
%\usepackage{Rd}
\usepackage{url}
\usepackage{wrapfig}
\usepackage{hyperref}
\usepackage[utf8]{inputenc}

\setlength{\parindent}{0cm}

\newcommand{\bF}{\ensuremath{\mathbf F}}
\newcommand{\bG}{\ensuremath{\mathbf G}}

\begin{document}

\begin{center}
\sf
{\sf \bf \Large A Guide to Scatterplot and Biplot Calibration}\\
\vspace{4mm}
{\sf \normalsize {\tt version 1.7.7}}\\%\normalsize
\vspace{4mm}
{\bf \large Jan Graffelman}\\
\vspace{4mm} \rm \large
Department of Statistics and Operations Research\\
Universitat Polit\`ecnica de Catalunya\\
Avinguda Diagonal 647, 08028 Barcelona, Spain.\\
{\it email:} jan.graffelman@upc.edu\\
\vspace{4mm}
{\sc June 2020}
\end{center}

\section{Introduction}

This guide gives detailed instructions on how to calibrate axes in scatterplots
and biplots obtained in the statistical environment R~\cite{RRR} by using the package
{\tt calibrate}. By calibration we 
refer to the procedure of drawing a (linear) scale along an axis in a plot with 
tick marks and numeric labels. In an ordinary scatter plot of two variables $x$ and $y$ 
two calibrated perpendicular scales are typically automatically produced by the 
routine used for plotting the two variables. However, scatter plots can be
extended with additional variables that are represented on oblique additional
axes. The software described in this guide can be used to create calibrated
scales on these oblique additional axes. Moreover, in a multivariate setting with more
than two variables, raw data matrices, correlation matrices, contingency tables,
regression coefficients, etc. are often represented graphically by means of biplots~\cite{Gabriel}. Biplots
also contain oblique axes representing variables. The described software can also be
used to construct scales on biplot axes.\\

The outline of this guide is as follows. In Section~\ref{sec:install} we indicate how the 
R package {\tt calibrate} can be installed. Section~\ref{sec:scatter} describes in detail
how to calibrate additional axes in scatter plots. Section~\ref{sec:biplot} treats the 
calibration of biplot axes. Several subsections follow with detailed
instructions of how to calibrate biplot axis in principal component analysis
(PCA, Section~\ref{sec:pca}), correspondence analysis (CA. Section~\ref{sec:ca}), 
canonical correlation analysis (CCA, Section~\ref{sec:cca}) and redundancy analysis (RDA, Section~\ref{sec:rda}). 
The online documentation of the main routine for calibration {\tt calibrate} is referenced in 
Section~\ref{sec:online}.\\

This guide does not provide the theory for the construction of scales on scatterplot
and biplot axes. For a theoretical account of biplot calibration, we refer to Graffelman
\& van Eeuwijk~(2005) and to Gower and Hand~(1996). If you appreciate 
this software then please cite the following paper in your work:\\

Graffelman, J. \& van Eeuwijk, F.A. (2005) Calibration of multivariate scatter plots for 
exploratory analysis of relations within and between sets of variables in genomic research
{\it Biometrical Journal}, {\bf 47}(6) pp. 863-879. \href{http://dx.doi.org/10.1002/bimj.200510177}{(clic here to access the paper)}

\section{Installation}
\label{sec:install}

<<fig=FALSE,echo=FALSE>>=
prefig <- function(){
data(goblets)
X <- goblets
plot(X[,1],X[,2],pch=19,cex=0.5,xlab=expression(X[1]),
ylab=expression(X[2]),xlim=c(5,25),ylim=c(5,25),asp=1)
m <- apply(cbind(X[,1],X[,2]),2,mean)
textxy(X[,1],X[,2],1:25,m=m,cex=0.75)
points(m[1],m[2],col="red",pch=19,cex=0.5)
abline(h = m[2])
abline(v = m[1])
}
options("SweaveHooks"=list(aap=prefig))
options("width"=60)
@

Packages in R can be installed inside the program with the option "Packages"
in the main menu and then choosing "Install package" and picking the package
"calibrate". Typing:

<<noot>>=
library(calibrate)
@

will, among others, make the function {\tt calibrate, canocor} and {\tt rda} available. Several
small data sets, also the ones used in this document, are included in the package ({\tt calves, goblets,
heads, linnerud} and {\tt storks}).

\section{Calibration of Scatterplot axes}
\label{sec:scatter}

We consider a archaeological data set concerning 6 size measurements ($X_1, \ldots, X_6$) on 25 
goblets. This data was published by Manly~(1989). The data can be loaded with
the {\tt data} instruction. 
<<fig=FALSE,echo=TRUE>>=
data(goblets)
X <- goblets
@

\subsection*{Oblique additional axes in a scatterplot}

We construct a scatterplot of $X_1$ versus $X_2$ and center a set of coordinate 
axes on the point $(\overline{x}_1,\overline{x}_2)$ with the function {\tt origin}.

\setkeys{Gin}{width=\textwidth}

<<fig=TRUE,echo=TRUE>>=
plot(X[,1],X[,2],pch=19,cex=0.5,xlab=expression(X[1]),ylab=expression(X[2]),
     xlim=c(5,25),ylim=c(5,25),asp=1)
m <- apply(X[,1:2],2,mean)
textxy(X[,1],X[,2],1:25,m=m,cex=0.75)
origin(m)
@

Next, we perform the regression of $X_5$ onto $X_1$ and $X_2$ (all variables being centered) in order to 
obtain an additional axis for $X_5$. We represent $X_5$ in the plot as a simple 
arrow whose coordinates are given by the regression coefficients:

<<fig=TRUE,echo=TRUE,aap=TRUE>>=
Xc <- scale(X,center=TRUE,scale=FALSE)
b <- solve(t(Xc[,1:2])%*%Xc[,1:2])%*%t(Xc[,1:2])%*%Xc[,5]
print(b)
bscaled <- 20*b
arrows(m[1],m[2],m[1]+bscaled[1],m[2]+bscaled[2],col="blue",length=0.1)
arrows(m[1],m[2],m[1]-bscaled[1],m[2]-bscaled[2],length=0,lty="dashed",col="blue")
@

A direction that is optimal in the least squares sense for $X_5$ is given by the vector of regression
coefficients~\cite{Graffel13}. To make this direction more visible, we multiplied it by a constant (20). 
It is clear that the direction of increase for $X_5$ runs approximately North-East across the scatterplot. 
We now proceed to calibrate this direction with a scale for $X_5$. In order to choose sensible values for
the scale of $X_5$, we first inspect the range of variation of $X_5$, and then choose a set of values we want
to mark off on the scale ({\tt tm}) and also compute the deviations of these values from the mean 
({\tt tmc}). We specify a tick length of 0.3 ({\tt tl=0.3}). Depending on the data, some values of {\tt tl}
typically have to be tried to see how to obtain a nice scale. 

<<fig=TRUE,echo=TRUE,aap=TRUE>>=
print(range(X[,5]))
yc <- scale(X[,5],scale=FALSE)
tm <- seq(2,10,by=1)
tmc <- tm - mean(X[,5])
Calibrate.X5<-calibrate(b,yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.3,axislab="X_5",
                        labpos=4,cex.axislab=1)
@

The numerical output from routine {\tt calibrate} shows that one unit along the axis for $X_5$ occupies 2.47
units in the plotting frame. The axis for $X_5$ makes an angle of 17.65 degrees with the positive x-axis.
The calibration factor is 6.12. Multiplying the vector of regressions coefficients by this
factor yields a vector that represents a unit change in the scale of $X_5$. E.g. for this data we have that 
the vector $6.12 \cdot (0.385, 0.123) = (2.358, 0.751)$ represents a unit change. This vector has
norm $\sqrt{2.358^2 + 0.751^2} = 2.47$. Other calibration factors may be specified by using parameter
{\tt alpha}. If {\tt alpha} is left unspecified the optimal value computed by least
squares will be used. The goodness-of-fit of $X_5$ is 0.513. This means that 51.3\% of the variance
of $X_5$ can be explained by a regression onto $X_1$ and $X_2$ ($R^2 = 0.513$). The goodness-of-scale has
the same value. The goodness-of-scale is only relevant if we modify parameter {\tt alpha}. {\tt Calibrate.X5}
is a list object containing all calibration results (calibration factor, fitted values according to the
scale used, tick marker positions, etc.).

\subsubsection*{Shifting a calibrated axis}

Using many calibrated axes in a plot, all passing through the origin, leads to dense plots that become
unreadable. It is therefore a good idea to shift calibrated axes towards the margins of the plot. This keeps
the central cloud of data points clear and relegates all information on scales to the margins of the graph.
There are two natural positions for a shifted axis: just above the largest data point in a direction perpendicular
to the axis being calibrated, or just below the smallest data point in the perpendicular direction. The arguments
{\tt shiftdir, shiftfactor} and {\tt shiftvec} can be used to control the shifting of a calibrated axis. {\tt 
shiftvec} allows the user to specify the shift vector manually. This is normally not needed, and good positions
for an axis can be found by using only {\tt shiftdir} and {\tt shiftfactor}. Argument {\tt shiftdir} can be set 
to {\tt 'right'} or {\tt 'left'} and indicates in which direction the axis is to be shifted, with respect to the direction of 
increase of the calibrated axis. Setting {\tt shiftdir} shifts the axis automatically just above or below 
the most outlying data point in the direction perpendicular to the vector being calibrated. In order to
move the calibrated axis farther out or to pull it more in, {\tt shiftfactor} can be used. 
Argument {\tt shiftfactor} stretches or shrinks the shift vector for the axis. A {\tt shiftfactor} larger
than 1 moves the axis outwards, and a {\tt shiftfactor} smaller than 1 pulls the axis towards the origin of
the plot. If set to 1 exactly, the shifted axis will cut through the most outlying data point. 
The default {\tt shiftfactor} is 1.05. We redo
the previous plot, shifting the calibrated axis below the cloud of points, which is to the right w.r.t. the 
direction of increase of the variable.

<<fig=TRUE,echo=TRUE,aap=TRUE>>=
yc <- scale(X[,5],scale=FALSE)
tm <- seq(2,10,by=1)
tmc <- tm - mean(X[,5])
Calibrate.X5<-calibrate(b,yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.3,axislab="X_5",labpos=4,
                        cex.axislab=1,shiftdir="right")
@

The shift of the axis does not affect the interpretation of the plot, because the projections of the points
onto the axis remain the same.

\subsubsection*{Second vertical axis in a scatterplot}

The oblique direction in the previous section is the preferred direction for $X_5$, as this direction
is optimal in the least squares sense. However, if desired, additional variables can also be represented
as a second vertical axis on the right of the plot, or as a second horizontal axis on the top of the
plot. We now proceed to construct a second vertical axis on the right hand of the scatter plot for
$X_5$. This can be done by setting the vector to be calibrated (first argument of routine {\tt calibrate})
to the (0,1) vector. By specifying a shiftvector explicitly ({\tt shiftvec}), the axis can be shifted. For 
this data, setting {\tt shiftvec} to {\tt c(par('usr')[2]-mean(X[,1]),0)} and {\tt shiftfactor = 1}, 
makes the axis coincide with the right vertical borderline of the graph.

<<fig=TRUE,echo=TRUE,aap=TRUE>>=
opar <- par('xpd'=TRUE)
tm <- seq(3,8,by=1)
tmc <- (tm - mean(X[,5]))
Calibrate.rightmargin.X5 <- calibrate(c(0,1),yc,tmc,Xc[,1:2],tmlab=tm,m=m,
                                      axislab="X_5",tl=0.5,
                                      shiftvec=c(par('usr')[2]-mean(X[,1]),0),
                                      shiftfactor=1,where=2,
                                      laboffset=c(1.5,1.5),cex.axislab=1)
par(opar)
@

The second vertical axis has calibration factor 3.46, and a goodness of fit of 0.34. The fit of the
variable is worse in comparison with the previous oblique direction given by the regression coefficients. Note
that graphical clipping in temporarily turned off ({\tt par('xpd'=TRUE)}) to allow the calibration 
routine to draw ticks and labels outside the figure region, and that the range of the tick marks was
shortened in order not surpass the figure region.

\subsubsection*{Subscales and double calibrations}

Scales with tick marks can be refined by drawing subscales with smaller tick marks. 
E.g. larger labelled
tickmarks can be used to represent multiples of 10, and small unlabelled tick marks can be used to 
represent units. The subscale allows a more precise recovery of the data values. This can simply be 
achieved by calling the calibration routine twice, once with a coarse sequence and once with a finer 
sequence. For the second call one can specify {\tt verb=FALSE} in order to suppress the numerical output
of the routine, and {\tt lm=FALSE} to supress the tick mark labels under the smaller ticks. The tickmarks
for the finer scale are made smaller by modifying the tick length (e.g. {\tt tl=0.1}). Depending on the data, 
some trial and error with different values for {\tt tl} may be necessary before nice scales are obtained. This
may be automatized in the future. Finally, reading off the (approximate) data values can further be enhanced 
by drawing perpendiculars from the points to the calibrated axis by setting {\tt dp=TRUE}.

<<fig=TRUE,echo=TRUE,aap=TRUE>>=
tm <- seq(2,10,by=1)
tmc <- (tm - mean(X[,5]))
Calibrate.X5 <- calibrate(b,yc,tmc,Xc[,1:2],tmlab=tm,m=m,axislab="X_5",tl=0.5,
                          dp=TRUE,labpos=4)
tm <- seq(2,10,by=0.1)
tmc <- (tm - mean(X[,5]))
Calibrate.X5 <- calibrate(b,yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.25,verb=FALSE,
                          lm=FALSE)
@

A {\it double calibration} can be created by drawing two scales, one on each side of the axis. Double
calibrations can be useful. For instance, one scale can be used for recovery of the original 
data values of the variable, whereas the second scale can be used for recovery of standardized values or
of correlations with other variables. Double calibrations can also be used to 
graphically verify if two different calibration procedures give the same result or not. 

\subsubsection*{Recalibrating the original scatterplot axes}

By calibrating the (0,1) and (1,0) vectors the original axes of the scatter plot can be 
redesigned. We illustrate the recalibration of the original axes by creating a second scale on
the other side of the axes, a refined scale for $X_1$, and a scale for the standardized data for
$X_2$. For the latter calibration one unit equals one standard deviation. 

<<fig=TRUE,echo=TRUE,aap=TRUE>>=
opar <- par('xpd'=TRUE)
tm <- seq(5,25,by=5)
tmc <- (tm - mean(X[,1]))
yc <- scale(X[,1],scale=FALSE)
Calibrate.X1 <- calibrate(c(1,0),yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.5,
                          axislab="X_1",cex.axislab=1,showlabel=FALSE,
shiftvec=c(0,-(m[2]-par("usr")[3])),shiftfactor=1,reverse=TRUE)
tm <- seq(5,25,by=1); tmc <- (tm - mean(X[,1]))
Calibrate.X1 <- calibrate(c(1,0),yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.25,
                          axislab="X_1",cex.axislab=1,showlabel=FALSE,
shiftvec=c(0,-(m[2]-par("usr")[3])),shiftfactor=1,reverse=TRUE,
                          verb=FALSE,lm=FALSE)
yc <- scale(X[,2],scale=TRUE)
tm <- seq(-3,1,by=1)
Calibrate.X2 <- calibrate(c(0,1),yc,tm,Xc[,1:2],tmlab=tm,m=m,tl=0.6,
                          axislab="X_2",cex.axislab=1,showlabel=FALSE,
shiftvec=c(-(mean(X[,1])-par('usr')[1]),0),shiftfactor=1,verb=TRUE,lm=TRUE)
tm <- seq(-3,1.5,by=0.1)
Calibrate.X2 <- calibrate(c(0,1),yc,tm,Xc[,1:2],tmlab=tm,m=m,tl=0.3,
                          axislab="X_2",cex.axislab=1,showlabel=FALSE,
shiftvec=c(-(mean(X[,1])-par('usr')[1]),0),shiftfactor=1,verb=FALSE,lm=FALSE)
par(opar)
@

\section{Calibration of Biplot axes}
\label{sec:biplot}

In this section we give detailed instructions on how to calibrate biplot axes. We will consider biplots 
of raw data matrices and correlation matrices obtained by PCA, biplots of profiles obtained in CA,
biplots of data matrices and correlation matrices (in particular the between-set correlation matrix) 
in CCA and biplots of fitted values and regression coefficients obtained by RDA. In principle, calibration
of biplot axes has little additional complication in comparison with the calibration of additional 
axes in scatterplots explained above. The main issue is that, prior to calling the calibration routine,
one needs to take care of the proper centring and standardisation of the tick marks. 

\subsection{Principal component analysis}
\label{sec:pca}

Principal component analysis can be performed by using routine {\tt princomp} from the {\tt stats }
library. We use again Manly's goblets data to create a biplot of the data based on a
PCA of the covariance matrix. We use {\tt princomp} to compute the scores for the rows and the columns
of the data matrix. The first principal component is seen to be a size component, separating the
smaller goblets on the right from the larger goblets on the left. The variable vectors are 
multiplied by a factor of 15 to facilitate interpretation. Next  we 
calibrate the vector for $X_3$, 
using labelled tickmarks for multiples of 5 units, and shorter unlabelled tickmarks for the units. The 
goodness of fit of $X_3$ is very high (0.99), which means that $X_3$ is close to perfectly 
represented. {\tt Calibrate.X3} is a list object containing the numerical results of the 
calibration.

<<fig=TRUE,echo=TRUE,aap=FALSE>>=
# PCA and Biplot construction
pca.results <- princomp(X,cor=FALSE)
Fp <- pca.results$scores
Gs <- pca.results$loadings
plot(Fp[,1],Fp[,2],pch=16,asp=1,xlab="PC 1",ylab="PC 2",cex=0.5)
textxy(Fp[,1],Fp[,2],rownames(X),cex=0.75)
arrows(0,0,15*Gs[,1],15*Gs[,2],length=0.1)
textxy(15*Gs[,1],15*Gs[,2],colnames(X),cex=0.75)
# Calibration of X_3
ticklab  <- seq(5,30,by=5)
ticklabc <- ticklab-mean(X[,3])
yc <- (X[,3]-mean(X[,3])) 
g <- Gs[3,1:2]                                  
Calibrate.X3 <- calibrate(g,yc,ticklabc,Fp[,1:2],ticklab,tl=0.5,
                          axislab="X3",cex.axislab=0.75,where=1,labpos=4)
ticklab  <- seq(5,30,by=1)
ticklabc <- ticklab-mean(X[,3])
Calibrate.X3.fine <- calibrate(g,yc,ticklabc,Fp[,1:2],ticklab,lm=FALSE,tl=0.25,
                               verb=FALSE,cex.axislab=0.75,where=1,labpos=4)
@

We do a PCA based on the correlation matrix, and proceed to construct a biplot of the correlation matrix. The
correlations of $X_5$ with the other variables are computed, and the biplot axis for $X_5$ is calibrated with a 
correlation scale. Routine {\tt calibrate} is repeatedly called to create finer subscales.

<<fig=TRUE,echo=TRUE,aap=FALSE>>=
# PCA and Biplot construction
pca.results <- princomp(X,cor=TRUE)
Fp <- pca.results$scores
Ds <- diag(pca.results$sdev)
Fs <- Fp%*%solve(Ds)
Gs <- pca.results$loadings
Gp <- Gs%*%Ds
#plot(Fs[,1],Fs[,2],pch=16,asp=1,xlab="PC 1",ylab="PC 2",cex=0.5)
#textxy(Fs[,1],Fs[,2],rownames(X))
plot(Gp[,1],Gp[,2],pch=16,cex=0.5,xlim=c(-1,1),ylim=c(-1,1),asp=1,
     xlab="1st principal axis",ylab="2nd principal axis")
arrows(0,0,Gp[,1],Gp[,2],length=0.1)
textxy(Gp[,1],Gp[,2],colnames(X),cex=0.75)
ticklab <- c(seq(-1,-0.2,by=0.2),seq(0.2,1.0,by=0.2))
R <- cor(X)
y <- R[,5]
g <- Gp[5,1:2]                                        
Calibrate.X5 <- calibrate(g,y,ticklab,Gp[,1:2],ticklab,lm=TRUE,tl=0.05,dp=TRUE,
                      labpos=2,cex.axislab=0.75,axislab="X_5")
ticklab <- seq(-1,1,by=0.1)
Calibrate.X5 <- calibrate(g,y,ticklab,Gp[,1:2],ticklab,lm=FALSE,tl=0.05,verb=FALSE)
ticklab <- seq(-1,1,by=0.01)
Calibrate.X5 <- calibrate(g,y,ticklab,Gp[,1:2],ticklab,lm=FALSE,tl=0.025,verb=FALSE)
@

The goodness of fit of the representation of the correlations of $X_5$ with the
other variables is 0.98, the 6 correlations being close to perfectly represented.
We compute the sample correlation matrix and compare the observed correlations of 
$X_5$ with those estimated from the calibrated biplot axis ({\tt yt}). Note that
PCA also tries to approximate the correlation of a variable with itself, and that
the arrow on representing $X_5$ falls short of the value 1 on its own calibrated scale.
The refined subscale allows very precise graphical representation of the correlations
as estimated by the biplot.

\begin{center}
<<fig=FALSE,echo=TRUE,aap=FALSE>>=
print(R)
print(cbind(R[,5],Calibrate.X5$yt))
@
\end{center}

\subsection{Correspondence analysis}
\label{sec:ca}

We consider a contingency table of a sample of Dutch calves born in the late nineties,
shown in Table~\ref{tab:calves2}. A total of 7257 calves were classified according 
to two categorical variables: the
method of production (ET = Embryo Transfer, IVP = In Vitro Production, AI = Artificial
Insemination) and the ease of delivery, scored on a scale from 1 (normal) to 6 (very heavy).
The data in Table~\ref{tab:calves2} were provided by Holland Genetics.
\begin{table}[htb]
\centering
\begin{tabular}{c|rrrr}
 & \multicolumn{3}{c}{Type of calf}\\
Ease of delivery  & ET & IVP & AI\\
\hline
1 &  97 & 150 & 1686\\
2 & 152 & 183 & 1339\\
3 & 377 & 249 & 1209\\
4 & 335 & 227 &  656\\
5 &  42 & 136 &  277\\
6 &   9 &  71 &   62\\
\hline
\end{tabular}
\caption{Calves data from Holland Genetics.}
\label{tab:calves2}
\end{table}

For this contingency table we obtain $\chi^2_{10} = 833.16$ with $p < 0.001$ and the null
hypothesis of no association between ease of delivery and type of calf has to be rejected. However, what is
the precise nature of this association? Correspondence analysis can be used to gain insight in the 
nature of this association. We use routine {\tt corresp} form the {\tt MASS} library~\cite{Venables}
to perform correspondence analysis and to obtain the coordinates for a biplot of the row profiles.
We compute the row profiles and then repeatedly call the calibration routine, each time with a
different set of {\tt ticklabs}.

<<fig=TRUE,echo=TRUE,aap=FALSE>>=
library(MASS)
data(calves)
ca.results <- corresp(calves,nf=2)
Fs <- ca.results$rscore
Gs <- ca.results$cscore
Ds <- diag(ca.results$cor)
Fp <- Fs%*%Ds
Gp <- Gs%*%Ds
plot(Gs[,1],Gs[,2],pch=16,asp=1,cex=0.5,xlab="1st principal axis",
     ylab="2nd principal axis")
textxy(Gs[,1],Gs[,2],colnames(calves),cex=0.75)
points(Fp[,1],Fp[,2],pch=16,cex=0.5)
textxy(Fp[,1],Fp[,2],rownames(calves),cex=0.75)
origin()
arrows(0,0,Gs[,1],Gs[,2])

P <- as.matrix(calves/sum(calves))
r <- apply(P,1,sum)
k <- apply(P,2,sum)
Dc <- diag(k)
Dr <- diag(r)

RP <- solve(Dr)%*%P
print(RP)
CRP <- RP - ones(nrow(RP), 1) %*% t(k)
TCRP <- CRP%*%solve(Dc)

y <- TCRP[,3]
g <- Gs[3,1:2]

ticklab  <- c(0,seq(0,1,by=0.2))                         
ticklabs <- (ticklab - k[3])/k[3]
Calibrate.AI <- calibrate(g,y,ticklabs,Fp[,1:2],ticklab,lm=TRUE,tl=0.10,
                          weights=Dr,axislab="AI",labpos=4,dp=TRUE)
ticklab  <- c(0,seq(0,1,by=0.1))                         
ticklabs <- (ticklab - k[3])/k[3]
Calibrate.AI <- calibrate(g,y,ticklabs,Fp[,1:2],ticklab,lm=FALSE,tl=0.10,
                          weights=Dr,verb=FALSE)
ticklab  <- c(0,seq(0,1,by=0.01))                         
ticklabs <- (ticklab - k[3])/k[3]
Calibrate.AI <- calibrate(g,y,ticklabs,Fp[,1:2],ticklab,lm=FALSE,tl=0.05,
                          weights=Dr,verb=FALSE)
@

Because the calibration is done by weighted least squares, a diagonal matrix of weights ({\tt weights=Dr}) 
is supplied as a parameter to the calibration routine
Note that the calibrated axis for the row profiles with respect to AI has goodness of fit 1. This
is due to the fact that the rank of the matrix of centred profiles is two, and that therefore
all profiles can be perfectly represented in two dimensional space.

\subsection{Canonical correlation analysis}
\label{sec:cca}

We consider a classical data set on the head sizes of the first and the second son of 25 families~\cite{Frets}.
These data have been analysed by several authors~\cite{Anderson,Mardia,Graffel16}
We first load the data and perform
a canonical correlation analysis, using supplied function {\tt canocor} (a more fully 
fledged program for canonical correlation analysis in comparison with {\tt cancor} from the {\tt stats} package).

<<fig=TRUE,echo=TRUE,aap=FALSE>>=
data(heads)
X  <- cbind(heads$X1,heads$X2)
Y  <- cbind(heads$Y1,heads$Y2)

Rxy<- cor(X,Y)
Ryx<- t(Rxy)
Rxx<- cor(X)
Ryy<- cor(Y)

cca.results <-canocor(X,Y)

plot(cca.results$Gs[,1],cca.results$Gs[,2],pch=16,asp=1,xlim=c(-1,1),ylim=c(-1,1),
     xlab=expression(V[1]),ylab=expression(V[2]))
arrows(0,0,cca.results$Fp[,1],cca.results$Fp[,2],length=0.1)
arrows(0,0,cca.results$Gs[,1],cca.results$Gs[,2],length=0.1)

textxy(cca.results$Fp[1,1],cca.results$Fp[1,2],expression(X[1]),cex=0.75)
textxy(cca.results$Fp[2,1],cca.results$Fp[2,2],expression(X[2]),cex=0.75)

textxy(cca.results$Gs[1,1],cca.results$Gs[1,2],expression(Y[1]),cex=0.75)
textxy(cca.results$Gs[2,1],cca.results$Gs[2,2],expression(Y[2]),cex=0.75)

circle(1)
ticklab  <- seq(-1,1,by=0.2)  

y <- Rxy[,2]
g <- cca.results$Gs[2,1:2]                        

Cal.Cor.Y2 <- calibrate(g,y,ticklab,cca.results$Fp[,1:2],ticklab,lm=TRUE,tl=0.05,
                        dp=TRUE,reverse=TRUE,weights=solve(Rxx),
axislab="Y_2",cex.axislab=0.75,showlabel=FALSE)
@

<<fig=TRUE,echo=TRUE,aap=FALSE>>=

plot(cca.results$Gs[,1],cca.results$Gs[,2],pch=16,asp=1,xlim=c(-2,2),ylim=c(-2,2),
     xlab=expression(V[1]),ylab=expression(V[2]))
#arrows(0,0,cca.results$Fp[,1],cca.results$Fp[,2],length=0.1)
#arrows(0,0,cca.results$Gs[,1],cca.results$Gs[,2],length=0.1)

textxy(cca.results$Fp[1,1],cca.results$Fp[1,2],expression(X[1]))
textxy(cca.results$Fp[2,1],cca.results$Fp[2,2],expression(X[2]))

textxy(cca.results$Gs[1,1],cca.results$Gs[1,2],expression(Y[1]))
textxy(cca.results$Gs[2,1],cca.results$Gs[2,2],expression(Y[2]))

points(cca.results$V[,1],cca.results$V[,2],pch=16,cex=0.5)
textxy(cca.results$V[,1],cca.results$V[,2],1:nrow(X),cex=0.75)


ticklab  <- seq(135,160,by=5)                           
ticklabc <- ticklab-mean(Y[,2])
ticklabs <- (ticklab-mean(Y[,2]))/sqrt(var(Y[,2]))

y <- (Y[,2]-mean(Y[,2]))/sqrt(var(Y[,2]))                      
Fr <- cca.results$V[,1:2]                                         
g <- cca.results$Gs[2,1:2]                                        

#points(cca.results$V[,1],cca.results$V[,2],cex=0.5,pch=19,col="red")
#textxy(cca.results$V[,1],cca.results$V[,2],rownames(Xn))

Cal.Data.Y2 <- calibrate(g,y,ticklabs,Fr,ticklab,lm=TRUE,tl=0.1,dp=TRUE,
                         reverse=TRUE,verb=TRUE,axislab="Y_2",
                         cex.axislab=0.75,showlabel=FALSE)

#cca.results<-lm.gls(Rxy[,5]~-1+Fr,W=solve(Rxx))

@

We construct the biplot of the between-set correlation matrix (the joint 
plot of ${\bF}_p$ and ${\bG}_s$). 
Firstly we calibrate the biplot axis for $Y_2$ with a correlation scale.
This calibration is done by generalised least squares with the inverse of the correlation matrix of 
the X-variables as a weight matrix ({\tt weights=solve(Rxx)}). Secondly, we calibrate the biplot axis 
for $Y_2$ with a scale for the original values. This second calibration has no weight 
matrix and is obtained by ordinary least squares. Both calibrations have a goodness of fit of 1 and
allow perfect recovery of correlations and original data values.

\subsection{Redundancy analysis}
\label{sec:rda}

Redundancy analysis can be seen as a constrained PCA. It allows two biplots, the biplot of the fitted
values and a biplot of regression coefficients. Function {\tt rda} of the package provides a routine
for redundancy analysis. We use Linnerud's data on physical exercise and body measurement 
variables~\cite{Tenenhaus} to illustrate calibrated biplots in redundancy analysis.

<<fig=TRUE,echo=TRUE,aap=FALSE>>=
data(linnerud)
X <- linnerud[,1:3]
Y <- linnerud[,4:6]
rda.results <- rda(X,Y)
plot(rda.results$Fs[,1],rda.results$Fs[,2],pch=16,asp=1,xlim=c(-2,2),ylim=c(-2,2),
     cex=0.5,xlab="1st principal axis",ylab="2nd principal axis")
arrows(0,0,2*rda.results$Gyp[,1],2*rda.results$Gyp[,2],length=0.1)
textxy(rda.results$Fs[,1],rda.results$Fs[,2],rownames(X),cex=0.75)
textxy(2*rda.results$Gyp[,1],2*rda.results$Gyp[,2],colnames(Y),cex=0.75)

y <- rda.results$Yh[,3]
g <- rda.results$Gyp[3,1:2]
Fr <- rda.results$Fs[,1:2]

ticklab <- c(seq(-0.6,-0.1,by=0.1),seq(0.1,0.6,by=0.1))
Calibrate.Yhat3 <- calibrate(g,y,ticklab,Fr,ticklab,lm=TRUE,dp=TRUE,tl=0.1,
                             axislab="Sauts",showlabel=FALSE)
@

<<fig=TRUE,echo=TRUE,aap=FALSE>>=
plot(rda.results$Gxs[,1],rda.results$Gxs[,2],pch=16,asp=1,xlim=c(-2,2),
     ylim=c(-2,2),cex=0.5,xlab="1st principal axis",
ylab="2nd principal axis")
arrows(0,0,rda.results$Gxs[,1],rda.results$Gxs[,2],length=0.1)
arrows(0,0,rda.results$Gyp[,1],rda.results$Gyp[,2],length=0.1)
textxy(rda.results$Gxs[,1],rda.results$Gxs[,2],colnames(X),cex=0.75)
textxy(rda.results$Gyp[,1],rda.results$Gyp[,2],colnames(Y),cex=0.75)

y <- rda.results$B[,3]
g <- rda.results$Gyp[3,1:2]
Fr <- rda.results$Gxs[,1:2]  

ticklab <- seq(-0.4,0.4,0.2)

W <-cor(X)

Calibrate.Y3 <- calibrate(g,y,ticklab,Fr,ticklab,lm=TRUE,dp=TRUE,tl=0.1,
                          weights=W,axislab="Sauts",showlabel=FALSE)
ticklab <- seq(-0.4,0.4,0.1)
Calibrate.Y3 <- calibrate(g,y,ticklab,Fr,ticklab,lm=FALSE,tl=0.05,verb=FALSE,
                          weights=W)
ticklab <- seq(-0.4,0.4,0.01)
Calibrate.Y3 <- calibrate(g,y,ticklab,Fr,ticklab,lm=FALSE,tl=0.025,verb=FALSE,
                          weights=W)
@

The first biplot shown is a biplot of the fitted values (obtained 
from the regression of Y onto X). Vectors for the response variables are multiplied by a factor of 3 to increase
readability. The fitted values of the regression of Sauts onto the body measurements have
a goodness of fit of 0.9984 and can very well be recovered by projection onto the calibrated
axis. The second biplot is a biplot of the matrix of regression coefficients. We
calibrated the biplot axis for "Sauts", such that the regression coefficients of the
explanory variables with respect to "Sauts" can be recovered. The goodness of fit for
"Sauts" is over 0.99, which means that the regression coefficients are close to
perfectly displayed. Note that the calibration for Sauts for the regression coefficients
is done by GLS with weight matrix equal to the correlation matrix of the X variables
({\tt weights=W}).

\section{Online documentation}
\label{sec:online}

Online documentation for the package can be obtained by typing 
{\tt vignette("CalibrationGuide"} or by accessing the file {\tt CalibrationGuide.pdf} in the {\tt doc} 
directory of the installed package.

\section{Version history}

Version 1.6:\\

\begin{itemize}

\item Function {\tt rad2degree} and {\tt shiftvector} have been added.

\item Function calibrate has changed. Argument {\tt shift} from previous versions is obsolete,
  and replaced by {\tt shiftdir, shiftfactor} and {\tt shiftvec}.

\end{itemize}

Version 1.7.2:\\

\begin{itemize}
\item Function {\tt textxy} has been modified and improved. Arguments {\tt dcol} and {\tt cx} no longer work, and their role has been taken over by {\tt col} and {\tt cex}. A new argument {\tt offset} controls the distance between point and label.
\end{itemize}


\section*{Acknowledgements}

This work was partially supported by the Spanish grant BEC2000-0983. I thank Holland Genetics 
({\tt http://www.hg.nl/}), Janneke van Wagtendonk and Sander de Roos for making the calves data 
available. This document was generated by Sweave~\cite{Leisch}.

\bibliographystyle{humanbio}
\begin{thebibliography}{10}

\bibitem[Anderson (1984)]{Anderson}
Anderson, T. W.
(1984)
{A}n {I}ntroduction to {M}ultivariate {S}tatistical {A}nalysis
John Wiley,
Second edition,
New York.
  
\bibitem[Frets (1921)]{Frets}
Frets, G. P.
(1921)
Heredity of head form in man,
Genetica,
3, 
pp. 193-384.

\bibitem[Gabriel, 1971]{Gabriel}
Gabriel, K. R. 
(1971)
The biplot graphic display of matrices with application to principal component analysis.
Biometrika 
58(3) 
pp. 453-467.

\bibitem[Gower and Hand (1996)]{Gower4}
Gower, J. C. and Hand, D. J.
(1996)
Biplots
Chapman \& Hall,
London.

\bibitem[Graffelman (2005)]{Graffel16}
Graffelman, J.
(2005)
Enriched biplots for canonical correlation analysis
Journal of Applied Statistics
32(2)
pp. 173-188.

\bibitem[Graffelman and Aluja-Banet (2003)]{Graffel13}
Graffelman, J. and Aluja-Banet, T.
(2003)
Optimal Representation of Supplementary Variables in Biplots from Principal Component Analysis and Correspondence Analysis
Biometrical Journal,
45(4)
pp. 491-509.

\bibitem[Graffelman and van Eeuwijk (2005)]{Graffel17}
Graffelman, J. and van Eeuwijk, F. A.,
(2005)
Calibration of multivariate scatter plots for exploratory analysis of relations within and between sets of variables 
in genomic research,
Biometrical Journal,
47,
6,
863-879.

\bibitem[Leisch (2002)]{Leisch}
Leisch, F.
(2002)
Sweave: Dynamic generation of statistical reports using literate data analysis
Compstat 2002, Proceedings in Computational Statistics
pp. 575-580,
Physica Verlag, Heidelberg,
ISBN 3-7908-1517-9
URL http:/www.ci.tuwien.ac.at/~leisch/Sweave.

\bibitem[Manly (1989)]{Manly}
Manly, B. F. J.
(1989)
Multivariate statistical methods: a primer
Chapman and Hall, London.

\bibitem[Mardia et al.(1979)]{Mardia}
Mardia, K. V. and Kent, J. T. and Bibby, J. M.
(1979)
Multivariate Analysis
Academic Press London.

\bibitem[R Development Core Team (2004)]{RRR}
R Development Core Team 
(2004) 
R: A language and environment forstatistical computing.
R Foundation for Statistical Computing,
Vienna, Austria,
ISBN 3-900051-00-3,
http://www.R-project.org.

\bibitem[Tenenhaus (1998)]{Tenenhaus}
Tenenhaus, M.
(1998)
La R\'{e}gression PLS
Paris, \'Editions Technip.

\bibitem[Venables and Ripley (2002)]{Venables}
Venables, W. N. and Ripley, B. D.
(2002)
{M}odern {A}pplied {S}tatistics with {S}-{P}lus
New York,
Fourth edition,
Springer.


\end{thebibliography}

\end{document}