1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
|
\documentclass[a4paper]{article}
% \VignetteIndexEntry{A R package for calibration of biplot and scatterplot axis.}
% \VignetteDepends{graphics,stats}
% \VignetteKeyword{multivariate}
% Documentation for the Calibrate package
\usepackage[english]{babel}
\usepackage{Sweave}
%\usepackage{Rd}
\usepackage{url}
\usepackage{wrapfig}
\usepackage{hyperref}
\usepackage[utf8]{inputenc}
\setlength{\parindent}{0cm}
\newcommand{\bF}{\ensuremath{\mathbf F}}
\newcommand{\bG}{\ensuremath{\mathbf G}}
\begin{document}
\begin{center}
\sf
{\sf \bf \Large A Guide to Scatterplot and Biplot Calibration}\\
\vspace{4mm}
{\sf \normalsize {\tt version 1.7.7}}\\%\normalsize
\vspace{4mm}
{\bf \large Jan Graffelman}\\
\vspace{4mm} \rm \large
Department of Statistics and Operations Research\\
Universitat Polit\`ecnica de Catalunya\\
Avinguda Diagonal 647, 08028 Barcelona, Spain.\\
{\it email:} jan.graffelman@upc.edu\\
\vspace{4mm}
{\sc June 2020}
\end{center}
\section{Introduction}
This guide gives detailed instructions on how to calibrate axes in scatterplots
and biplots obtained in the statistical environment R~\cite{RRR} by using the package
{\tt calibrate}. By calibration we
refer to the procedure of drawing a (linear) scale along an axis in a plot with
tick marks and numeric labels. In an ordinary scatter plot of two variables $x$ and $y$
two calibrated perpendicular scales are typically automatically produced by the
routine used for plotting the two variables. However, scatter plots can be
extended with additional variables that are represented on oblique additional
axes. The software described in this guide can be used to create calibrated
scales on these oblique additional axes. Moreover, in a multivariate setting with more
than two variables, raw data matrices, correlation matrices, contingency tables,
regression coefficients, etc. are often represented graphically by means of biplots~\cite{Gabriel}. Biplots
also contain oblique axes representing variables. The described software can also be
used to construct scales on biplot axes.\\
The outline of this guide is as follows. In Section~\ref{sec:install} we indicate how the
R package {\tt calibrate} can be installed. Section~\ref{sec:scatter} describes in detail
how to calibrate additional axes in scatter plots. Section~\ref{sec:biplot} treats the
calibration of biplot axes. Several subsections follow with detailed
instructions of how to calibrate biplot axis in principal component analysis
(PCA, Section~\ref{sec:pca}), correspondence analysis (CA. Section~\ref{sec:ca}),
canonical correlation analysis (CCA, Section~\ref{sec:cca}) and redundancy analysis (RDA, Section~\ref{sec:rda}).
The online documentation of the main routine for calibration {\tt calibrate} is referenced in
Section~\ref{sec:online}.\\
This guide does not provide the theory for the construction of scales on scatterplot
and biplot axes. For a theoretical account of biplot calibration, we refer to Graffelman
\& van Eeuwijk~(2005) and to Gower and Hand~(1996). If you appreciate
this software then please cite the following paper in your work:\\
Graffelman, J. \& van Eeuwijk, F.A. (2005) Calibration of multivariate scatter plots for
exploratory analysis of relations within and between sets of variables in genomic research
{\it Biometrical Journal}, {\bf 47}(6) pp. 863-879. \href{http://dx.doi.org/10.1002/bimj.200510177}{(clic here to access the paper)}
\section{Installation}
\label{sec:install}
<<fig=FALSE,echo=FALSE>>=
prefig <- function(){
data(goblets)
X <- goblets
plot(X[,1],X[,2],pch=19,cex=0.5,xlab=expression(X[1]),
ylab=expression(X[2]),xlim=c(5,25),ylim=c(5,25),asp=1)
m <- apply(cbind(X[,1],X[,2]),2,mean)
textxy(X[,1],X[,2],1:25,m=m,cex=0.75)
points(m[1],m[2],col="red",pch=19,cex=0.5)
abline(h = m[2])
abline(v = m[1])
}
options("SweaveHooks"=list(aap=prefig))
options("width"=60)
@
Packages in R can be installed inside the program with the option "Packages"
in the main menu and then choosing "Install package" and picking the package
"calibrate". Typing:
<<noot>>=
library(calibrate)
@
will, among others, make the function {\tt calibrate, canocor} and {\tt rda} available. Several
small data sets, also the ones used in this document, are included in the package ({\tt calves, goblets,
heads, linnerud} and {\tt storks}).
\section{Calibration of Scatterplot axes}
\label{sec:scatter}
We consider a archaeological data set concerning 6 size measurements ($X_1, \ldots, X_6$) on 25
goblets. This data was published by Manly~(1989). The data can be loaded with
the {\tt data} instruction.
<<fig=FALSE,echo=TRUE>>=
data(goblets)
X <- goblets
@
\subsection*{Oblique additional axes in a scatterplot}
We construct a scatterplot of $X_1$ versus $X_2$ and center a set of coordinate
axes on the point $(\overline{x}_1,\overline{x}_2)$ with the function {\tt origin}.
\setkeys{Gin}{width=\textwidth}
<<fig=TRUE,echo=TRUE>>=
plot(X[,1],X[,2],pch=19,cex=0.5,xlab=expression(X[1]),ylab=expression(X[2]),
xlim=c(5,25),ylim=c(5,25),asp=1)
m <- apply(X[,1:2],2,mean)
textxy(X[,1],X[,2],1:25,m=m,cex=0.75)
origin(m)
@
Next, we perform the regression of $X_5$ onto $X_1$ and $X_2$ (all variables being centered) in order to
obtain an additional axis for $X_5$. We represent $X_5$ in the plot as a simple
arrow whose coordinates are given by the regression coefficients:
<<fig=TRUE,echo=TRUE,aap=TRUE>>=
Xc <- scale(X,center=TRUE,scale=FALSE)
b <- solve(t(Xc[,1:2])%*%Xc[,1:2])%*%t(Xc[,1:2])%*%Xc[,5]
print(b)
bscaled <- 20*b
arrows(m[1],m[2],m[1]+bscaled[1],m[2]+bscaled[2],col="blue",length=0.1)
arrows(m[1],m[2],m[1]-bscaled[1],m[2]-bscaled[2],length=0,lty="dashed",col="blue")
@
A direction that is optimal in the least squares sense for $X_5$ is given by the vector of regression
coefficients~\cite{Graffel13}. To make this direction more visible, we multiplied it by a constant (20).
It is clear that the direction of increase for $X_5$ runs approximately North-East across the scatterplot.
We now proceed to calibrate this direction with a scale for $X_5$. In order to choose sensible values for
the scale of $X_5$, we first inspect the range of variation of $X_5$, and then choose a set of values we want
to mark off on the scale ({\tt tm}) and also compute the deviations of these values from the mean
({\tt tmc}). We specify a tick length of 0.3 ({\tt tl=0.3}). Depending on the data, some values of {\tt tl}
typically have to be tried to see how to obtain a nice scale.
<<fig=TRUE,echo=TRUE,aap=TRUE>>=
print(range(X[,5]))
yc <- scale(X[,5],scale=FALSE)
tm <- seq(2,10,by=1)
tmc <- tm - mean(X[,5])
Calibrate.X5<-calibrate(b,yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.3,axislab="X_5",
labpos=4,cex.axislab=1)
@
The numerical output from routine {\tt calibrate} shows that one unit along the axis for $X_5$ occupies 2.47
units in the plotting frame. The axis for $X_5$ makes an angle of 17.65 degrees with the positive x-axis.
The calibration factor is 6.12. Multiplying the vector of regressions coefficients by this
factor yields a vector that represents a unit change in the scale of $X_5$. E.g. for this data we have that
the vector $6.12 \cdot (0.385, 0.123) = (2.358, 0.751)$ represents a unit change. This vector has
norm $\sqrt{2.358^2 + 0.751^2} = 2.47$. Other calibration factors may be specified by using parameter
{\tt alpha}. If {\tt alpha} is left unspecified the optimal value computed by least
squares will be used. The goodness-of-fit of $X_5$ is 0.513. This means that 51.3\% of the variance
of $X_5$ can be explained by a regression onto $X_1$ and $X_2$ ($R^2 = 0.513$). The goodness-of-scale has
the same value. The goodness-of-scale is only relevant if we modify parameter {\tt alpha}. {\tt Calibrate.X5}
is a list object containing all calibration results (calibration factor, fitted values according to the
scale used, tick marker positions, etc.).
\subsubsection*{Shifting a calibrated axis}
Using many calibrated axes in a plot, all passing through the origin, leads to dense plots that become
unreadable. It is therefore a good idea to shift calibrated axes towards the margins of the plot. This keeps
the central cloud of data points clear and relegates all information on scales to the margins of the graph.
There are two natural positions for a shifted axis: just above the largest data point in a direction perpendicular
to the axis being calibrated, or just below the smallest data point in the perpendicular direction. The arguments
{\tt shiftdir, shiftfactor} and {\tt shiftvec} can be used to control the shifting of a calibrated axis. {\tt
shiftvec} allows the user to specify the shift vector manually. This is normally not needed, and good positions
for an axis can be found by using only {\tt shiftdir} and {\tt shiftfactor}. Argument {\tt shiftdir} can be set
to {\tt 'right'} or {\tt 'left'} and indicates in which direction the axis is to be shifted, with respect to the direction of
increase of the calibrated axis. Setting {\tt shiftdir} shifts the axis automatically just above or below
the most outlying data point in the direction perpendicular to the vector being calibrated. In order to
move the calibrated axis farther out or to pull it more in, {\tt shiftfactor} can be used.
Argument {\tt shiftfactor} stretches or shrinks the shift vector for the axis. A {\tt shiftfactor} larger
than 1 moves the axis outwards, and a {\tt shiftfactor} smaller than 1 pulls the axis towards the origin of
the plot. If set to 1 exactly, the shifted axis will cut through the most outlying data point.
The default {\tt shiftfactor} is 1.05. We redo
the previous plot, shifting the calibrated axis below the cloud of points, which is to the right w.r.t. the
direction of increase of the variable.
<<fig=TRUE,echo=TRUE,aap=TRUE>>=
yc <- scale(X[,5],scale=FALSE)
tm <- seq(2,10,by=1)
tmc <- tm - mean(X[,5])
Calibrate.X5<-calibrate(b,yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.3,axislab="X_5",labpos=4,
cex.axislab=1,shiftdir="right")
@
The shift of the axis does not affect the interpretation of the plot, because the projections of the points
onto the axis remain the same.
\subsubsection*{Second vertical axis in a scatterplot}
The oblique direction in the previous section is the preferred direction for $X_5$, as this direction
is optimal in the least squares sense. However, if desired, additional variables can also be represented
as a second vertical axis on the right of the plot, or as a second horizontal axis on the top of the
plot. We now proceed to construct a second vertical axis on the right hand of the scatter plot for
$X_5$. This can be done by setting the vector to be calibrated (first argument of routine {\tt calibrate})
to the (0,1) vector. By specifying a shiftvector explicitly ({\tt shiftvec}), the axis can be shifted. For
this data, setting {\tt shiftvec} to {\tt c(par('usr')[2]-mean(X[,1]),0)} and {\tt shiftfactor = 1},
makes the axis coincide with the right vertical borderline of the graph.
<<fig=TRUE,echo=TRUE,aap=TRUE>>=
opar <- par('xpd'=TRUE)
tm <- seq(3,8,by=1)
tmc <- (tm - mean(X[,5]))
Calibrate.rightmargin.X5 <- calibrate(c(0,1),yc,tmc,Xc[,1:2],tmlab=tm,m=m,
axislab="X_5",tl=0.5,
shiftvec=c(par('usr')[2]-mean(X[,1]),0),
shiftfactor=1,where=2,
laboffset=c(1.5,1.5),cex.axislab=1)
par(opar)
@
The second vertical axis has calibration factor 3.46, and a goodness of fit of 0.34. The fit of the
variable is worse in comparison with the previous oblique direction given by the regression coefficients. Note
that graphical clipping in temporarily turned off ({\tt par('xpd'=TRUE)}) to allow the calibration
routine to draw ticks and labels outside the figure region, and that the range of the tick marks was
shortened in order not surpass the figure region.
\subsubsection*{Subscales and double calibrations}
Scales with tick marks can be refined by drawing subscales with smaller tick marks.
E.g. larger labelled
tickmarks can be used to represent multiples of 10, and small unlabelled tick marks can be used to
represent units. The subscale allows a more precise recovery of the data values. This can simply be
achieved by calling the calibration routine twice, once with a coarse sequence and once with a finer
sequence. For the second call one can specify {\tt verb=FALSE} in order to suppress the numerical output
of the routine, and {\tt lm=FALSE} to supress the tick mark labels under the smaller ticks. The tickmarks
for the finer scale are made smaller by modifying the tick length (e.g. {\tt tl=0.1}). Depending on the data,
some trial and error with different values for {\tt tl} may be necessary before nice scales are obtained. This
may be automatized in the future. Finally, reading off the (approximate) data values can further be enhanced
by drawing perpendiculars from the points to the calibrated axis by setting {\tt dp=TRUE}.
<<fig=TRUE,echo=TRUE,aap=TRUE>>=
tm <- seq(2,10,by=1)
tmc <- (tm - mean(X[,5]))
Calibrate.X5 <- calibrate(b,yc,tmc,Xc[,1:2],tmlab=tm,m=m,axislab="X_5",tl=0.5,
dp=TRUE,labpos=4)
tm <- seq(2,10,by=0.1)
tmc <- (tm - mean(X[,5]))
Calibrate.X5 <- calibrate(b,yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.25,verb=FALSE,
lm=FALSE)
@
A {\it double calibration} can be created by drawing two scales, one on each side of the axis. Double
calibrations can be useful. For instance, one scale can be used for recovery of the original
data values of the variable, whereas the second scale can be used for recovery of standardized values or
of correlations with other variables. Double calibrations can also be used to
graphically verify if two different calibration procedures give the same result or not.
\subsubsection*{Recalibrating the original scatterplot axes}
By calibrating the (0,1) and (1,0) vectors the original axes of the scatter plot can be
redesigned. We illustrate the recalibration of the original axes by creating a second scale on
the other side of the axes, a refined scale for $X_1$, and a scale for the standardized data for
$X_2$. For the latter calibration one unit equals one standard deviation.
<<fig=TRUE,echo=TRUE,aap=TRUE>>=
opar <- par('xpd'=TRUE)
tm <- seq(5,25,by=5)
tmc <- (tm - mean(X[,1]))
yc <- scale(X[,1],scale=FALSE)
Calibrate.X1 <- calibrate(c(1,0),yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.5,
axislab="X_1",cex.axislab=1,showlabel=FALSE,
shiftvec=c(0,-(m[2]-par("usr")[3])),shiftfactor=1,reverse=TRUE)
tm <- seq(5,25,by=1); tmc <- (tm - mean(X[,1]))
Calibrate.X1 <- calibrate(c(1,0),yc,tmc,Xc[,1:2],tmlab=tm,m=m,tl=0.25,
axislab="X_1",cex.axislab=1,showlabel=FALSE,
shiftvec=c(0,-(m[2]-par("usr")[3])),shiftfactor=1,reverse=TRUE,
verb=FALSE,lm=FALSE)
yc <- scale(X[,2],scale=TRUE)
tm <- seq(-3,1,by=1)
Calibrate.X2 <- calibrate(c(0,1),yc,tm,Xc[,1:2],tmlab=tm,m=m,tl=0.6,
axislab="X_2",cex.axislab=1,showlabel=FALSE,
shiftvec=c(-(mean(X[,1])-par('usr')[1]),0),shiftfactor=1,verb=TRUE,lm=TRUE)
tm <- seq(-3,1.5,by=0.1)
Calibrate.X2 <- calibrate(c(0,1),yc,tm,Xc[,1:2],tmlab=tm,m=m,tl=0.3,
axislab="X_2",cex.axislab=1,showlabel=FALSE,
shiftvec=c(-(mean(X[,1])-par('usr')[1]),0),shiftfactor=1,verb=FALSE,lm=FALSE)
par(opar)
@
\section{Calibration of Biplot axes}
\label{sec:biplot}
In this section we give detailed instructions on how to calibrate biplot axes. We will consider biplots
of raw data matrices and correlation matrices obtained by PCA, biplots of profiles obtained in CA,
biplots of data matrices and correlation matrices (in particular the between-set correlation matrix)
in CCA and biplots of fitted values and regression coefficients obtained by RDA. In principle, calibration
of biplot axes has little additional complication in comparison with the calibration of additional
axes in scatterplots explained above. The main issue is that, prior to calling the calibration routine,
one needs to take care of the proper centring and standardisation of the tick marks.
\subsection{Principal component analysis}
\label{sec:pca}
Principal component analysis can be performed by using routine {\tt princomp} from the {\tt stats }
library. We use again Manly's goblets data to create a biplot of the data based on a
PCA of the covariance matrix. We use {\tt princomp} to compute the scores for the rows and the columns
of the data matrix. The first principal component is seen to be a size component, separating the
smaller goblets on the right from the larger goblets on the left. The variable vectors are
multiplied by a factor of 15 to facilitate interpretation. Next we
calibrate the vector for $X_3$,
using labelled tickmarks for multiples of 5 units, and shorter unlabelled tickmarks for the units. The
goodness of fit of $X_3$ is very high (0.99), which means that $X_3$ is close to perfectly
represented. {\tt Calibrate.X3} is a list object containing the numerical results of the
calibration.
<<fig=TRUE,echo=TRUE,aap=FALSE>>=
# PCA and Biplot construction
pca.results <- princomp(X,cor=FALSE)
Fp <- pca.results$scores
Gs <- pca.results$loadings
plot(Fp[,1],Fp[,2],pch=16,asp=1,xlab="PC 1",ylab="PC 2",cex=0.5)
textxy(Fp[,1],Fp[,2],rownames(X),cex=0.75)
arrows(0,0,15*Gs[,1],15*Gs[,2],length=0.1)
textxy(15*Gs[,1],15*Gs[,2],colnames(X),cex=0.75)
# Calibration of X_3
ticklab <- seq(5,30,by=5)
ticklabc <- ticklab-mean(X[,3])
yc <- (X[,3]-mean(X[,3]))
g <- Gs[3,1:2]
Calibrate.X3 <- calibrate(g,yc,ticklabc,Fp[,1:2],ticklab,tl=0.5,
axislab="X3",cex.axislab=0.75,where=1,labpos=4)
ticklab <- seq(5,30,by=1)
ticklabc <- ticklab-mean(X[,3])
Calibrate.X3.fine <- calibrate(g,yc,ticklabc,Fp[,1:2],ticklab,lm=FALSE,tl=0.25,
verb=FALSE,cex.axislab=0.75,where=1,labpos=4)
@
We do a PCA based on the correlation matrix, and proceed to construct a biplot of the correlation matrix. The
correlations of $X_5$ with the other variables are computed, and the biplot axis for $X_5$ is calibrated with a
correlation scale. Routine {\tt calibrate} is repeatedly called to create finer subscales.
<<fig=TRUE,echo=TRUE,aap=FALSE>>=
# PCA and Biplot construction
pca.results <- princomp(X,cor=TRUE)
Fp <- pca.results$scores
Ds <- diag(pca.results$sdev)
Fs <- Fp%*%solve(Ds)
Gs <- pca.results$loadings
Gp <- Gs%*%Ds
#plot(Fs[,1],Fs[,2],pch=16,asp=1,xlab="PC 1",ylab="PC 2",cex=0.5)
#textxy(Fs[,1],Fs[,2],rownames(X))
plot(Gp[,1],Gp[,2],pch=16,cex=0.5,xlim=c(-1,1),ylim=c(-1,1),asp=1,
xlab="1st principal axis",ylab="2nd principal axis")
arrows(0,0,Gp[,1],Gp[,2],length=0.1)
textxy(Gp[,1],Gp[,2],colnames(X),cex=0.75)
ticklab <- c(seq(-1,-0.2,by=0.2),seq(0.2,1.0,by=0.2))
R <- cor(X)
y <- R[,5]
g <- Gp[5,1:2]
Calibrate.X5 <- calibrate(g,y,ticklab,Gp[,1:2],ticklab,lm=TRUE,tl=0.05,dp=TRUE,
labpos=2,cex.axislab=0.75,axislab="X_5")
ticklab <- seq(-1,1,by=0.1)
Calibrate.X5 <- calibrate(g,y,ticklab,Gp[,1:2],ticklab,lm=FALSE,tl=0.05,verb=FALSE)
ticklab <- seq(-1,1,by=0.01)
Calibrate.X5 <- calibrate(g,y,ticklab,Gp[,1:2],ticklab,lm=FALSE,tl=0.025,verb=FALSE)
@
The goodness of fit of the representation of the correlations of $X_5$ with the
other variables is 0.98, the 6 correlations being close to perfectly represented.
We compute the sample correlation matrix and compare the observed correlations of
$X_5$ with those estimated from the calibrated biplot axis ({\tt yt}). Note that
PCA also tries to approximate the correlation of a variable with itself, and that
the arrow on representing $X_5$ falls short of the value 1 on its own calibrated scale.
The refined subscale allows very precise graphical representation of the correlations
as estimated by the biplot.
\begin{center}
<<fig=FALSE,echo=TRUE,aap=FALSE>>=
print(R)
print(cbind(R[,5],Calibrate.X5$yt))
@
\end{center}
\subsection{Correspondence analysis}
\label{sec:ca}
We consider a contingency table of a sample of Dutch calves born in the late nineties,
shown in Table~\ref{tab:calves2}. A total of 7257 calves were classified according
to two categorical variables: the
method of production (ET = Embryo Transfer, IVP = In Vitro Production, AI = Artificial
Insemination) and the ease of delivery, scored on a scale from 1 (normal) to 6 (very heavy).
The data in Table~\ref{tab:calves2} were provided by Holland Genetics.
\begin{table}[htb]
\centering
\begin{tabular}{c|rrrr}
& \multicolumn{3}{c}{Type of calf}\\
Ease of delivery & ET & IVP & AI\\
\hline
1 & 97 & 150 & 1686\\
2 & 152 & 183 & 1339\\
3 & 377 & 249 & 1209\\
4 & 335 & 227 & 656\\
5 & 42 & 136 & 277\\
6 & 9 & 71 & 62\\
\hline
\end{tabular}
\caption{Calves data from Holland Genetics.}
\label{tab:calves2}
\end{table}
For this contingency table we obtain $\chi^2_{10} = 833.16$ with $p < 0.001$ and the null
hypothesis of no association between ease of delivery and type of calf has to be rejected. However, what is
the precise nature of this association? Correspondence analysis can be used to gain insight in the
nature of this association. We use routine {\tt corresp} form the {\tt MASS} library~\cite{Venables}
to perform correspondence analysis and to obtain the coordinates for a biplot of the row profiles.
We compute the row profiles and then repeatedly call the calibration routine, each time with a
different set of {\tt ticklabs}.
<<fig=TRUE,echo=TRUE,aap=FALSE>>=
library(MASS)
data(calves)
ca.results <- corresp(calves,nf=2)
Fs <- ca.results$rscore
Gs <- ca.results$cscore
Ds <- diag(ca.results$cor)
Fp <- Fs%*%Ds
Gp <- Gs%*%Ds
plot(Gs[,1],Gs[,2],pch=16,asp=1,cex=0.5,xlab="1st principal axis",
ylab="2nd principal axis")
textxy(Gs[,1],Gs[,2],colnames(calves),cex=0.75)
points(Fp[,1],Fp[,2],pch=16,cex=0.5)
textxy(Fp[,1],Fp[,2],rownames(calves),cex=0.75)
origin()
arrows(0,0,Gs[,1],Gs[,2])
P <- as.matrix(calves/sum(calves))
r <- apply(P,1,sum)
k <- apply(P,2,sum)
Dc <- diag(k)
Dr <- diag(r)
RP <- solve(Dr)%*%P
print(RP)
CRP <- RP - ones(nrow(RP), 1) %*% t(k)
TCRP <- CRP%*%solve(Dc)
y <- TCRP[,3]
g <- Gs[3,1:2]
ticklab <- c(0,seq(0,1,by=0.2))
ticklabs <- (ticklab - k[3])/k[3]
Calibrate.AI <- calibrate(g,y,ticklabs,Fp[,1:2],ticklab,lm=TRUE,tl=0.10,
weights=Dr,axislab="AI",labpos=4,dp=TRUE)
ticklab <- c(0,seq(0,1,by=0.1))
ticklabs <- (ticklab - k[3])/k[3]
Calibrate.AI <- calibrate(g,y,ticklabs,Fp[,1:2],ticklab,lm=FALSE,tl=0.10,
weights=Dr,verb=FALSE)
ticklab <- c(0,seq(0,1,by=0.01))
ticklabs <- (ticklab - k[3])/k[3]
Calibrate.AI <- calibrate(g,y,ticklabs,Fp[,1:2],ticklab,lm=FALSE,tl=0.05,
weights=Dr,verb=FALSE)
@
Because the calibration is done by weighted least squares, a diagonal matrix of weights ({\tt weights=Dr})
is supplied as a parameter to the calibration routine
Note that the calibrated axis for the row profiles with respect to AI has goodness of fit 1. This
is due to the fact that the rank of the matrix of centred profiles is two, and that therefore
all profiles can be perfectly represented in two dimensional space.
\subsection{Canonical correlation analysis}
\label{sec:cca}
We consider a classical data set on the head sizes of the first and the second son of 25 families~\cite{Frets}.
These data have been analysed by several authors~\cite{Anderson,Mardia,Graffel16}
We first load the data and perform
a canonical correlation analysis, using supplied function {\tt canocor} (a more fully
fledged program for canonical correlation analysis in comparison with {\tt cancor} from the {\tt stats} package).
<<fig=TRUE,echo=TRUE,aap=FALSE>>=
data(heads)
X <- cbind(heads$X1,heads$X2)
Y <- cbind(heads$Y1,heads$Y2)
Rxy<- cor(X,Y)
Ryx<- t(Rxy)
Rxx<- cor(X)
Ryy<- cor(Y)
cca.results <-canocor(X,Y)
plot(cca.results$Gs[,1],cca.results$Gs[,2],pch=16,asp=1,xlim=c(-1,1),ylim=c(-1,1),
xlab=expression(V[1]),ylab=expression(V[2]))
arrows(0,0,cca.results$Fp[,1],cca.results$Fp[,2],length=0.1)
arrows(0,0,cca.results$Gs[,1],cca.results$Gs[,2],length=0.1)
textxy(cca.results$Fp[1,1],cca.results$Fp[1,2],expression(X[1]),cex=0.75)
textxy(cca.results$Fp[2,1],cca.results$Fp[2,2],expression(X[2]),cex=0.75)
textxy(cca.results$Gs[1,1],cca.results$Gs[1,2],expression(Y[1]),cex=0.75)
textxy(cca.results$Gs[2,1],cca.results$Gs[2,2],expression(Y[2]),cex=0.75)
circle(1)
ticklab <- seq(-1,1,by=0.2)
y <- Rxy[,2]
g <- cca.results$Gs[2,1:2]
Cal.Cor.Y2 <- calibrate(g,y,ticklab,cca.results$Fp[,1:2],ticklab,lm=TRUE,tl=0.05,
dp=TRUE,reverse=TRUE,weights=solve(Rxx),
axislab="Y_2",cex.axislab=0.75,showlabel=FALSE)
@
<<fig=TRUE,echo=TRUE,aap=FALSE>>=
plot(cca.results$Gs[,1],cca.results$Gs[,2],pch=16,asp=1,xlim=c(-2,2),ylim=c(-2,2),
xlab=expression(V[1]),ylab=expression(V[2]))
#arrows(0,0,cca.results$Fp[,1],cca.results$Fp[,2],length=0.1)
#arrows(0,0,cca.results$Gs[,1],cca.results$Gs[,2],length=0.1)
textxy(cca.results$Fp[1,1],cca.results$Fp[1,2],expression(X[1]))
textxy(cca.results$Fp[2,1],cca.results$Fp[2,2],expression(X[2]))
textxy(cca.results$Gs[1,1],cca.results$Gs[1,2],expression(Y[1]))
textxy(cca.results$Gs[2,1],cca.results$Gs[2,2],expression(Y[2]))
points(cca.results$V[,1],cca.results$V[,2],pch=16,cex=0.5)
textxy(cca.results$V[,1],cca.results$V[,2],1:nrow(X),cex=0.75)
ticklab <- seq(135,160,by=5)
ticklabc <- ticklab-mean(Y[,2])
ticklabs <- (ticklab-mean(Y[,2]))/sqrt(var(Y[,2]))
y <- (Y[,2]-mean(Y[,2]))/sqrt(var(Y[,2]))
Fr <- cca.results$V[,1:2]
g <- cca.results$Gs[2,1:2]
#points(cca.results$V[,1],cca.results$V[,2],cex=0.5,pch=19,col="red")
#textxy(cca.results$V[,1],cca.results$V[,2],rownames(Xn))
Cal.Data.Y2 <- calibrate(g,y,ticklabs,Fr,ticklab,lm=TRUE,tl=0.1,dp=TRUE,
reverse=TRUE,verb=TRUE,axislab="Y_2",
cex.axislab=0.75,showlabel=FALSE)
#cca.results<-lm.gls(Rxy[,5]~-1+Fr,W=solve(Rxx))
@
We construct the biplot of the between-set correlation matrix (the joint
plot of ${\bF}_p$ and ${\bG}_s$).
Firstly we calibrate the biplot axis for $Y_2$ with a correlation scale.
This calibration is done by generalised least squares with the inverse of the correlation matrix of
the X-variables as a weight matrix ({\tt weights=solve(Rxx)}). Secondly, we calibrate the biplot axis
for $Y_2$ with a scale for the original values. This second calibration has no weight
matrix and is obtained by ordinary least squares. Both calibrations have a goodness of fit of 1 and
allow perfect recovery of correlations and original data values.
\subsection{Redundancy analysis}
\label{sec:rda}
Redundancy analysis can be seen as a constrained PCA. It allows two biplots, the biplot of the fitted
values and a biplot of regression coefficients. Function {\tt rda} of the package provides a routine
for redundancy analysis. We use Linnerud's data on physical exercise and body measurement
variables~\cite{Tenenhaus} to illustrate calibrated biplots in redundancy analysis.
<<fig=TRUE,echo=TRUE,aap=FALSE>>=
data(linnerud)
X <- linnerud[,1:3]
Y <- linnerud[,4:6]
rda.results <- rda(X,Y)
plot(rda.results$Fs[,1],rda.results$Fs[,2],pch=16,asp=1,xlim=c(-2,2),ylim=c(-2,2),
cex=0.5,xlab="1st principal axis",ylab="2nd principal axis")
arrows(0,0,2*rda.results$Gyp[,1],2*rda.results$Gyp[,2],length=0.1)
textxy(rda.results$Fs[,1],rda.results$Fs[,2],rownames(X),cex=0.75)
textxy(2*rda.results$Gyp[,1],2*rda.results$Gyp[,2],colnames(Y),cex=0.75)
y <- rda.results$Yh[,3]
g <- rda.results$Gyp[3,1:2]
Fr <- rda.results$Fs[,1:2]
ticklab <- c(seq(-0.6,-0.1,by=0.1),seq(0.1,0.6,by=0.1))
Calibrate.Yhat3 <- calibrate(g,y,ticklab,Fr,ticklab,lm=TRUE,dp=TRUE,tl=0.1,
axislab="Sauts",showlabel=FALSE)
@
<<fig=TRUE,echo=TRUE,aap=FALSE>>=
plot(rda.results$Gxs[,1],rda.results$Gxs[,2],pch=16,asp=1,xlim=c(-2,2),
ylim=c(-2,2),cex=0.5,xlab="1st principal axis",
ylab="2nd principal axis")
arrows(0,0,rda.results$Gxs[,1],rda.results$Gxs[,2],length=0.1)
arrows(0,0,rda.results$Gyp[,1],rda.results$Gyp[,2],length=0.1)
textxy(rda.results$Gxs[,1],rda.results$Gxs[,2],colnames(X),cex=0.75)
textxy(rda.results$Gyp[,1],rda.results$Gyp[,2],colnames(Y),cex=0.75)
y <- rda.results$B[,3]
g <- rda.results$Gyp[3,1:2]
Fr <- rda.results$Gxs[,1:2]
ticklab <- seq(-0.4,0.4,0.2)
W <-cor(X)
Calibrate.Y3 <- calibrate(g,y,ticklab,Fr,ticklab,lm=TRUE,dp=TRUE,tl=0.1,
weights=W,axislab="Sauts",showlabel=FALSE)
ticklab <- seq(-0.4,0.4,0.1)
Calibrate.Y3 <- calibrate(g,y,ticklab,Fr,ticklab,lm=FALSE,tl=0.05,verb=FALSE,
weights=W)
ticklab <- seq(-0.4,0.4,0.01)
Calibrate.Y3 <- calibrate(g,y,ticklab,Fr,ticklab,lm=FALSE,tl=0.025,verb=FALSE,
weights=W)
@
The first biplot shown is a biplot of the fitted values (obtained
from the regression of Y onto X). Vectors for the response variables are multiplied by a factor of 3 to increase
readability. The fitted values of the regression of Sauts onto the body measurements have
a goodness of fit of 0.9984 and can very well be recovered by projection onto the calibrated
axis. The second biplot is a biplot of the matrix of regression coefficients. We
calibrated the biplot axis for "Sauts", such that the regression coefficients of the
explanory variables with respect to "Sauts" can be recovered. The goodness of fit for
"Sauts" is over 0.99, which means that the regression coefficients are close to
perfectly displayed. Note that the calibration for Sauts for the regression coefficients
is done by GLS with weight matrix equal to the correlation matrix of the X variables
({\tt weights=W}).
\section{Online documentation}
\label{sec:online}
Online documentation for the package can be obtained by typing
{\tt vignette("CalibrationGuide"} or by accessing the file {\tt CalibrationGuide.pdf} in the {\tt doc}
directory of the installed package.
\section{Version history}
Version 1.6:\\
\begin{itemize}
\item Function {\tt rad2degree} and {\tt shiftvector} have been added.
\item Function calibrate has changed. Argument {\tt shift} from previous versions is obsolete,
and replaced by {\tt shiftdir, shiftfactor} and {\tt shiftvec}.
\end{itemize}
Version 1.7.2:\\
\begin{itemize}
\item Function {\tt textxy} has been modified and improved. Arguments {\tt dcol} and {\tt cx} no longer work, and their role has been taken over by {\tt col} and {\tt cex}. A new argument {\tt offset} controls the distance between point and label.
\end{itemize}
\section*{Acknowledgements}
This work was partially supported by the Spanish grant BEC2000-0983. I thank Holland Genetics
({\tt http://www.hg.nl/}), Janneke van Wagtendonk and Sander de Roos for making the calves data
available. This document was generated by Sweave~\cite{Leisch}.
\bibliographystyle{humanbio}
\begin{thebibliography}{10}
\bibitem[Anderson (1984)]{Anderson}
Anderson, T. W.
(1984)
{A}n {I}ntroduction to {M}ultivariate {S}tatistical {A}nalysis
John Wiley,
Second edition,
New York.
\bibitem[Frets (1921)]{Frets}
Frets, G. P.
(1921)
Heredity of head form in man,
Genetica,
3,
pp. 193-384.
\bibitem[Gabriel, 1971]{Gabriel}
Gabriel, K. R.
(1971)
The biplot graphic display of matrices with application to principal component analysis.
Biometrika
58(3)
pp. 453-467.
\bibitem[Gower and Hand (1996)]{Gower4}
Gower, J. C. and Hand, D. J.
(1996)
Biplots
Chapman \& Hall,
London.
\bibitem[Graffelman (2005)]{Graffel16}
Graffelman, J.
(2005)
Enriched biplots for canonical correlation analysis
Journal of Applied Statistics
32(2)
pp. 173-188.
\bibitem[Graffelman and Aluja-Banet (2003)]{Graffel13}
Graffelman, J. and Aluja-Banet, T.
(2003)
Optimal Representation of Supplementary Variables in Biplots from Principal Component Analysis and Correspondence Analysis
Biometrical Journal,
45(4)
pp. 491-509.
\bibitem[Graffelman and van Eeuwijk (2005)]{Graffel17}
Graffelman, J. and van Eeuwijk, F. A.,
(2005)
Calibration of multivariate scatter plots for exploratory analysis of relations within and between sets of variables
in genomic research,
Biometrical Journal,
47,
6,
863-879.
\bibitem[Leisch (2002)]{Leisch}
Leisch, F.
(2002)
Sweave: Dynamic generation of statistical reports using literate data analysis
Compstat 2002, Proceedings in Computational Statistics
pp. 575-580,
Physica Verlag, Heidelberg,
ISBN 3-7908-1517-9
URL http:/www.ci.tuwien.ac.at/~leisch/Sweave.
\bibitem[Manly (1989)]{Manly}
Manly, B. F. J.
(1989)
Multivariate statistical methods: a primer
Chapman and Hall, London.
\bibitem[Mardia et al.(1979)]{Mardia}
Mardia, K. V. and Kent, J. T. and Bibby, J. M.
(1979)
Multivariate Analysis
Academic Press London.
\bibitem[R Development Core Team (2004)]{RRR}
R Development Core Team
(2004)
R: A language and environment forstatistical computing.
R Foundation for Statistical Computing,
Vienna, Austria,
ISBN 3-900051-00-3,
http://www.R-project.org.
\bibitem[Tenenhaus (1998)]{Tenenhaus}
Tenenhaus, M.
(1998)
La R\'{e}gression PLS
Paris, \'Editions Technip.
\bibitem[Venables and Ripley (2002)]{Venables}
Venables, W. N. and Ripley, B. D.
(2002)
{M}odern {A}pplied {S}tatistics with {S}-{P}lus
New York,
Fourth edition,
Springer.
\end{thebibliography}
\end{document}
|