File: get_CLE_class.Rd

package info (click to toggle)
r-cran-calibratr 0.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid, trixie
  • size: 484 kB
  • sloc: makefile: 2
file content (31 lines) | stat: -rw-r--r-- 1,361 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/get_CLE.R
\name{get_CLE_class}
\alias{get_CLE_class}
\title{get_CLE_class}
\usage{
get_CLE_class(actual, predicted, bins = 10)
}
\arguments{
\item{actual}{vector of observed class labels (0/1)}

\item{predicted}{vector of uncalibrated predictions}

\item{bins}{number of bins for the equal-width binning model, default=10}
}
\value{
object of class list containing the following components:
\item{class_1}{CLE of class 1 instances}
\item{class_0}{CLE of class 0 instances}
}
\description{
calculates the class-specific classification error CLE in the test set.
The method computes the deviation of the calibrated predictions of class 1 instances from their true value 1.
For class 0 instances, \code{get_CLE_class} computes the deviation from 0.
Class 1 CLE is 0 when all class 1 instances have a calibrated prediction of 1 regardless of potential miscalibration of class 0 instances.
CLE calculation is helpful when miscalibration and -classification is more cost-sensitive for one class than for the other.
}
\seealso{
\code{\link[reshape2]{melt}}
 \code{\link[ggplot2]{ggplot}},\code{\link[ggplot2]{geom_line}},\code{\link[ggplot2]{aes}},\code{\link[ggplot2]{position_dodge}},\code{\link[ggplot2]{labs}},\code{\link[ggplot2]{scale_colour_manual}}
}