1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/predict_calibratR_parallel.R
\name{predict_calibratR}
\alias{predict_calibratR}
\title{predict_calibratR}
\usage{
predict_calibratR(calibration_models, new = NULL, nCores = 4)
}
\arguments{
\item{calibration_models}{list of trained calibration models that were constructed using the \code{\link{calibrate}} method.
The list components \code{calibration_models} from the \code{\link{calibrate}} output can be used directly.}
\item{new}{vector of new uncalibrated instances. Default: 100 scores from the minimum to the maximum of the original ML scores}
\item{nCores}{\code{nCores} how many cores should be used during parallelisation. Default: 4}
}
\value{
list object with the following components:
\item{predictions}{a list containing the calibrated predictions for each calibration model}
\item{significance_test_set}{a list containing the percentage of \code{new} instances for which prediction estimates are statistically significant}
\item{pred_per_bin}{a list containing the number of instances in each bin for the binning models}
}
\description{
maps the uncalibrated predictions \code{new} into calibrated predictions using the passed over \code{calibration models}
}
\details{
if no \code{new} value is given, the function will evaluate a sequence of numbers ranging from the minimum to the maximum of the original values in the training set
}
\examples{
## Loading dataset in environment
data(example)
test_set <- example$test_set
calibration_model <- example$calibration_model
## Predict for test set
predictions <- predict_calibratR(calibration_model$calibration_models, new=test_set, nCores = 2)
}
\author{
Johanna Schwarz
}
|