File: train.Rd

package info (click to toggle)
r-cran-caret 6.0-73%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 5,884 kB
  • ctags: 9
  • sloc: ansic: 207; sh: 10; makefile: 2
file content (257 lines) | stat: -rw-r--r-- 10,064 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/train.default.R
\name{train}
\alias{train}
\alias{train.default}
\alias{train.formula}
\title{Fit Predictive Models over Different Tuning Parameters}
\usage{
train(x, ...)

\method{train}{default}(x, y, method = "rf", preProcess = NULL, ...,
  weights = NULL, metric = ifelse(is.factor(y), "Accuracy", "RMSE"),
  maximize = ifelse(metric \%in\% c("RMSE", "logLoss"), FALSE, TRUE),
  trControl = trainControl(), tuneGrid = NULL, tuneLength = 3)

\method{train}{formula}(form, data, ..., weights, subset, na.action = na.fail,
  contrasts = NULL)
}
\arguments{
\item{x}{an object where samples are in rows and features are in columns.
This could be a simple matrix, data frame or other type (e.g. sparse
matrix). See Details below.}

\item{y}{a numeric or factor vector containing the outcome for each sample.}

\item{method}{a string specifying which classification or regression model
to use. Possible values are found using \code{names(getModelInfo())}. See
\url{http://topepo.github.io/caret/bytag.html}. A list of functions can also
be passed for a custom model function. See
\url{http://topepo.github.io/caret/custom_models.html} for details.}

\item{preProcess}{a string vector that defines a pre-processing of the
predictor data. Current possibilities are "BoxCox", "YeoJohnson",
"expoTrans", "center", "scale", "range", "knnImpute", "bagImpute",
"medianImpute", "pca", "ica" and "spatialSign". The default is no
pre-processing. See \code{\link{preProcess}} and \code{\link{trainControl}}
on the procedures and how to adjust them. Pre-processing code is only
designed to work when \code{x} is a simple matrix or data frame.}

\item{weights}{a numeric vector of case weights. This argument will only
affect models that allow case weights.}

\item{metric}{a string that specifies what summary metric will be used to
select the optimal model. By default, possible values are "RMSE" and
"Rsquared" for regression and "Accuracy" and "Kappa" for classification. If
custom performance metrics are used (via the \code{summaryFunction} argument
in \code{\link{trainControl}}, the value of \code{metric} should match one
of the arguments. If it does not, a warning is issued and the first metric
given by the \code{summaryFunction} is used. (NOTE: If given, this argument
must be named.)}

\item{maximize}{a logical: should the metric be maximized or minimized?}

\item{trControl}{a list of values that define how this function acts. See
\code{\link{trainControl}} and
\url{http://topepo.github.io/caret/training.html#custom}. (NOTE: If given,
this argument must be named.)}

\item{tuneGrid}{a data frame with possible tuning values. The columns are
named the same as the tuning parameters. Use \code{\link{getModelInfo}} to
get a list of tuning parameters for each model or see
\url{http://topepo.github.io/caret/modelList.html}. (NOTE: If given, this
argument must be named.)}

\item{tuneLength}{an integer denoting the amount of granularity in the
tuning parameter grid. By default, this argument is the number of levels for
each tuning parameters that should be generated by \code{\link{train}}. If
\code{\link{trainControl}} has the option \code{search = "random"}, this is
the maximum number of tuning parameter combinations that will be generated
by the random search. (NOTE: If given, this argument must be named.)}

\item{form}{A formula of the form \code{y ~ x1 + x2 + ...}}

\item{data}{Data frame from which variables specified in \code{formula} are
preferentially to be taken.}

\item{subset}{An index vector specifying the cases to be used in the
training sample. (NOTE: If given, this argument must be named.)}

\item{na.action}{A function to specify the action to be taken if NAs are
found. The default action is for the procedure to fail. An alternative is
\code{na.omit}, which leads to rejection of cases with missing values on any
required variable. (NOTE: If given, this argument must be named.)}

\item{contrasts}{a list of contrasts to be used for some or all the factors
appearing as variables in the model formula.}

\item{\dots}{arguments passed to the classification or regression routine
(such as \code{\link[randomForest]{randomForest}}). Errors will occur if
values for tuning parameters are passed here.}
}
\value{
A list is returned of class \code{train} containing: \item{method
}{the chosen model.} \item{modelType }{an identifier of the model type.}
\item{results }{a data frame the training error rate and values of the
tuning parameters.} \item{bestTune }{a data frame with the final
parameters.}

\item{call }{the (matched) function call with dots expanded} \item{dots}{a
list containing any ... values passed to the original call} \item{metric}{a
string that specifies what summary metric will be used to select the optimal
model.} \item{control}{the list of control parameters.} \item{preProcess
}{either \code{NULL} or an object of class \code{\link{preProcess}}}
\item{finalModel}{an fit object using the best parameters}
\item{trainingData}{a data frame} \item{resample}{A data frame with columns
for each performance metric. Each row corresponds to each resample. If
leave-one-out cross-validation or out-of-bag estimation methods are
requested, this will be \code{NULL}. The \code{returnResamp} argument of
\code{\link{trainControl}} controls how much of the resampled results are
saved.} \item{perfNames}{a character vector of performance metrics that are
produced by the summary function} \item{maximize}{a logical recycled from
the function arguments.} \item{yLimits}{the range of the training set
outcomes.} \item{times}{a list of execution times: \code{everything} is for
the entire call to \code{train}, \code{final} for the final model fit and,
optionally, \code{prediction} for the time to predict new samples (see
\code{\link{trainControl}})}
}
\description{
This function sets up a grid of tuning parameters for a number of
classification and regression routines, fits each model and calculates a
resampling based performance measure.
}
\details{
\code{train} can be used to tune models by picking the complexity parameters
that are associated with the optimal resampling statistics. For particular
model, a grid of parameters (if any) is created and the model is trained on
slightly different data for each candidate combination of tuning parameters.
Across each data set, the performance of held-out samples is calculated and
the mean and standard deviation is summarized for each combination. The
combination with the optimal resampling statistic is chosen as the final
model and the entire training set is used to fit a final model.

The predictors in \code{x} can be most any object as long as the underlying
model fit function can deal with the object class. The function was designed
to work with simple matrices and data frame inputs, so some functionality
may not work (e.g. pre-processing). When using string kernels, the vector of
character strings should be converted to a matrix with a single column.

More details on this function can be found at
\url{http://topepo.github.io/caret/training.html}.

A variety of models are currently available and are enumerated by tag (i.e.
their model characteristics) at
\url{http://topepo.github.io/caret/bytag.html}.
}
\examples{

\dontrun{

#######################################
## Classification Example

data(iris)
TrainData <- iris[,1:4]
TrainClasses <- iris[,5]

knnFit1 <- train(TrainData, TrainClasses,
                 method = "knn",
                 preProcess = c("center", "scale"),
                 tuneLength = 10,
                 trControl = trainControl(method = "cv"))

knnFit2 <- train(TrainData, TrainClasses,
                 method = "knn",
                 preProcess = c("center", "scale"),
                 tuneLength = 10, 
                 trControl = trainControl(method = "boot"))


library(MASS)
nnetFit <- train(TrainData, TrainClasses,
                 method = "nnet",
                 preProcess = "range", 
                 tuneLength = 2,
                 trace = FALSE,
                 maxit = 100)

#######################################
## Regression Example

library(mlbench)
data(BostonHousing)

lmFit <- train(medv ~ . + rm:lstat,
               data = BostonHousing, 
               method = "lm")

library(rpart)
rpartFit <- train(medv ~ .,
                  data = BostonHousing,
                  method = "rpart",
                  tuneLength = 9)

#######################################
## Example with a custom metric

madSummary <- function (data,
                        lev = NULL,
                        model = NULL) {
  out <- mad(data$obs - data$pred, 
             na.rm = TRUE)  
  names(out) <- "MAD"
  out
}

robustControl <- trainControl(summaryFunction = madSummary)
marsGrid <- expand.grid(degree = 1, nprune = (1:10) * 2)

earthFit <- train(medv ~ .,
                  data = BostonHousing, 
                  method = "earth",
                  tuneGrid = marsGrid,
                  metric = "MAD",
                  maximize = FALSE,
                  trControl = robustControl)

#######################################
## Parallel Processing Example via multicore package

## library(doMC)
## registerDoMC(2)

## NOTE: don't run models form RWeka when using
### multicore. The session will crash.

## The code for train() does not change:
set.seed(1)
usingMC <-  train(medv ~ .,
                  data = BostonHousing, 
                  method = "glmboost")

## or use:
## library(doMPI) or 
## library(doParallel) or 
## library(doSMP) and so on

}


}
\author{
Max Kuhn (the guts of \code{train.formula} were based on Ripley's
\code{nnet.formula})
}
\references{
\url{http://topepo.github.io/caret/training.html}

Kuhn (2008), ``Building Predictive Models in R Using the caret''
(\url{http://www.jstatsoft.org/article/view/v028i05/v28i05.pdf})
}
\seealso{
\code{\link{models}}, \code{\link{trainControl}},
\code{\link{update.train}}, \code{\link{modelLookup}},
\code{\link{createFolds}}
}
\keyword{models}