File: trim_bayesglm.R

package info (click to toggle)
r-cran-caret 6.0-73%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 5,884 kB
  • ctags: 9
  • sloc: ansic: 207; sh: 10; makefile: 2
file content (57 lines) | stat: -rw-r--r-- 1,911 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
library(caret)

test_that('bayesglm classification', {
  skip_on_cran()
  set.seed(1)
  tr_dat <- twoClassSim(200)
  te_dat <- twoClassSim(200)

  set.seed(2)
  class_trim <- train(Class ~ ., data = tr_dat,
                      method = "bayesglm",
                      tuneLength=1,
                      trControl = trainControl(method = "none",
                                               classProbs = TRUE,
                                               trim = TRUE))

  set.seed(2)
  class_notrim <- train(Class ~ ., data = tr_dat,
                        method = "bayesglm",
                        tuneLength=1,
                        trControl = trainControl(method = "none",
                                                 classProbs = TRUE,
                                                 trim = FALSE))

  expect_equal(predict(class_trim,   te_dat),
               predict(class_notrim, te_dat))

  expect_equal(predict(class_trim,   te_dat, type = "prob"),
               predict(class_notrim, te_dat, type = "prob"))

  expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
})

test_that('bayesglm regression', {
  skip_on_cran()
  set.seed(1)
  tr_dat <- SLC14_1(200)
  te_dat <- SLC14_1(200)

  set.seed(2)
  reg_trim <- train(y ~ ., data = tr_dat,
                    method = "bayesglm",
                    tuneLength=1,
                    trControl = trainControl(method = "none",
                                             trim = TRUE))

  set.seed(2)
  reg_notrim <- train(y ~ ., data = tr_dat,
                      method = "bayesglm",
                      tuneLength=1,
                      trControl = trainControl(method = "none",
                                               trim = FALSE))
  expect_equal(predict(reg_trim,   te_dat),
               predict(reg_notrim, te_dat))
  expect_less_than(object.size(reg_trim)-object.size(reg_notrim), 0)
})