File: trim_train.R

package info (click to toggle)
r-cran-caret 6.0-73%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 5,884 kB
  • ctags: 9
  • sloc: ansic: 207; sh: 10; makefile: 2
file content (120 lines) | stat: -rw-r--r-- 4,288 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
library(caret)

test_that('train classification', {
  skip_on_cran()
  set.seed(1)
  tr_dat <- twoClassSim(200)
  te_dat <- twoClassSim(200)
  
  set.seed(2)
  class_trim <- train(Class ~ ., data = tr_dat,
                      method = "rpart",
                      tuneGrid = data.frame(cp = 0.22),
                      preProc = c("center", "bagImpute"),
                      trControl = trainControl(method = "none", 
                                               classProbs = TRUE,
                                               trim = TRUE))
  class_trim <- caret:::trim.train(class_trim)
  
  set.seed(2)
  class_notrim <- train(Class ~ ., data = tr_dat,
                        method = "rpart",
                        tuneGrid = data.frame(cp = 0.22),
                        preProc = c("center", "bagImpute"),
                        trControl = trainControl(method = "none", 
                                                 classProbs = TRUE,
                                                 trim = FALSE))
  
  expect_equal(predict(class_trim,   te_dat),
               predict(class_notrim, te_dat))
  
  expect_equal(predict(class_trim,   te_dat, type = "prob"),
               predict(class_notrim, te_dat, type = "prob"))
  
  expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
})

test_that('train regression', {
  skip_on_cran()
  set.seed(1)
  tr_dat <- SLC14_1(200)
  te_dat <- SLC14_1(200)
  
  set.seed(2)
  reg_trim <- train(y ~ ., data = tr_dat,
                    method = "rpart",
                    tuneGrid = data.frame(cp = 0.12),
                    trControl = trainControl(method = "none", 
                                             trim = TRUE))
  reg_trim <- caret:::trim.train(reg_trim)
  
  set.seed(2)
  reg_notrim <- train(y ~ ., data = tr_dat,
                      method = "rpart",
                      tuneGrid = data.frame(cp = 0.12),
                      trControl = trainControl(method = "none", 
                                               trim = FALSE))
  expect_equal(predict(reg_trim,   te_dat),
               predict(reg_notrim, te_dat))
  expect_less_than(object.size(reg_trim)-object.size(reg_notrim), 0)
})


test_that('train/earth classification', {
  skip_on_cran()
  set.seed(1)
  tr_dat <- twoClassSim(200)
  te_dat <- twoClassSim(200)
  
  set.seed(2)
  class_trim <- train(Class ~ ., data = tr_dat,
                      method = "earth",
                      tuneGrid = data.frame(nprune = 3, degree = 1),
                      trControl = trainControl(method = "none", 
                                               classProbs = TRUE,
                                               trim = TRUE))
  class_trim <- caret:::trim.train(class_trim)
  
  set.seed(2)
  class_notrim <- train(Class ~ ., data = tr_dat,
                        method = "earth",
                        tuneGrid = data.frame(nprune = 3, degree = 1),
                        trControl = trainControl(method = "none", 
                                                 classProbs = TRUE,
                                                 trim = FALSE))
  
  expect_equal(predict(class_trim,   te_dat),
               predict(class_notrim, te_dat))
  
  expect_equal(predict(class_trim,   te_dat, type = "prob"),
               predict(class_notrim, te_dat, type = "prob"))
  
  expect_less_than(object.size(class_trim)-object.size(class_notrim), 0)
})

test_that('train/earth regression', {
  skip_on_cran()
  set.seed(1)
  tr_dat <- SLC14_1(200)
  te_dat <- SLC14_1(200)
  
  set.seed(2)
  reg_trim <- train(y ~ ., data = tr_dat,
                    method = "earth",
                    tuneGrid = data.frame(nprune = 3, degree = 1),
                    trControl = trainControl(method = "none", 
                                             trim = TRUE))
  
  set.seed(2)
  reg_notrim <- train(y ~ ., data = tr_dat,
                      method = "earth",
                      tuneGrid = data.frame(nprune = 3, degree = 1),
                      trControl = trainControl(method = "none", 
                                               trim = FALSE))
  expect_equal(predict(reg_trim,   te_dat),
               predict(reg_notrim, te_dat))
  expect_less_than(object.size(reg_trim)-object.size(reg_notrim), 0)
})