1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
#' Bagged FDA
#' @aliases bagFDA print.bagFDA bagFDA.default bagFDA.formula
#'
#' @description A bagging wrapper for flexible discriminant analysis (FDA) using multivariate adaptive regression splines (MARS) basis functions
#'
#'
#' @param formula A formula of the form \code{y ~ x1 + x2 + ...}
#' @param x matrix or data frame of 'x' values for examples.
#' @param y matrix or data frame of numeric values outcomes.
#' @param weights (case) weights for each example - if missing defaults to 1.
#' @param data Data frame from which variables specified in 'formula' are
#' preferentially to be taken.
#' @param subset An index vector specifying the cases to be used in the
#' training sample. (NOTE: If given, this argument must be
#' named.)
#' @param na.action A function to specify the action to be taken if 'NA's are
#' found. The default action is for the procedure to fail. An
#' alternative is na.omit, which leads to rejection of cases
#' with missing values on any required variable. (NOTE: If
#' given, this argument must be named.)
#'
#' @param B the number of bootstrap samples
#'
#' @param keepX a logical: should the original training data be kept?
#'
#' @param \dots arguments passed to the \code{mars} function
#'
#' @details The function computes a FDA model for each bootstap sample.
#'
#' @return
#' A list with elements
#' \item{fit }{a list of \code{B} FDA fits}
#' \item{B }{the number of bootstrap samples}
#' \item{call }{the function call}
#' \item{x }{either \code{NULL} or the value of \code{x}, depending on the
#' value of \code{keepX}}
#' \item{oob}{a matrix of performance estimates for each bootstrap sample}
#'
#' @references J. Friedman, ``Multivariate Adaptive Regression Splines'' (with discussion) (1991). Annals of Statistics, 19/1, 1-141.
#'
#' @author Max Kuhn (\code{bagFDA.formula} is based on Ripley's \code{nnet.formula})
#'
#' @seealso \code{\link[mda]{fda}}, \code{\link{predict.bagFDA}}
#'
#' @examples
#' library(mlbench)
#' library(earth)
#' data(Glass)
#'
#' set.seed(36)
#' inTrain <- sample(1:dim(Glass)[1], 150)
#'
#' trainData <- Glass[ inTrain, ]
#' testData <- Glass[-inTrain, ]
#'
#'
#' set.seed(3577)
#' baggedFit <- bagFDA(Type ~ ., trainData)
#' confusionMatrix(data = predict(baggedFit, testData[, -10]),
#' reference = testData[, 10])
#'
#' @keywords regression
#'
#' @export
"bagFDA" <-
function(x, ...)
UseMethod("bagFDA")
#' @rdname bagFDA
#' @method bagFDA default
#' @importFrom stats predict
#' @export
"bagFDA.default" <-
function(x, y, weights = NULL, B = 50, keepX = TRUE, ...)
{
requireNamespaceQuietStop("mda")
requireNamespaceQuietStop("earth")
if(!is.matrix(x)) x <- as.matrix(x)
if(!is.vector(y) & !is.factor(y)) y <- as.vector(y)
if(!is.vector(y) & !is.factor(y)) y <- factor(y[,1])
if(is.null(weights)) weights <- rep(1, dim(x)[1])
foo <- function(index, x, y, w, ...)
{
subX <- x[index,, drop = FALSE]
subY <- y[index]
tmp <- as.data.frame(subX, stringsAsFactors = FALSE)
tmp$.outcome <- subY
if(!is.null(w)) subW <- w[index]
fit <- if(is.null(w))
mda::fda(.outcome ~., data = tmp, method = earth::earth, ...) else
mda::fda(.outcome ~., data = tmp, method = earth::earth, weights = subW, ...)
fit$index <- index
fit
}
oobFoo <- function(fit, x, y)
{
index <- fit$index
subX <- x[-index,, drop = FALSE]
subY <- y[-index]
predY <- predict(fit, subX)
postResample(predY, subY)
}
btSamples <- createResample(y, times = B)
btFits <- lapply(btSamples, foo, x = x, y = y, w = weights, ...)
oobList <- lapply(btFits, oobFoo, x = x, y = y)
oob <- matrix(unlist(oobList), ncol = length(oobList[[1]]), byrow = TRUE)
colnames(oob) <- names(oobList[[1]])
if(keepX) x <- x else x <- NULL
structure(list(fit = btFits, B = B, oob = oob, x = x, levels = levels(y),
weights = !is.null(weights), dots = list(...)), class = "bagFDA")
}
#' @rdname bagFDA
#' @method bagFDA formula
#' @importFrom stats contrasts model.matrix model.response model.weights na.omit
#' @export
"bagFDA.formula" <-
function (formula, data = NULL, B = 50, keepX = TRUE, ..., subset, weights = NULL, na.action = na.omit)
{
if (!inherits(formula, "formula"))
stop("method is only for formula objects")
m <- match.call(expand.dots = FALSE)
mIndex <- match(c("formula", "data", "subset", "weights", "na.action"), names(m), 0)
m <- m[c(1, mIndex)]
m$... <- NULL
m$na.action <- na.action
m[[1]] <- as.name("model.frame")
m <- eval(m, parent.frame())
Terms <- attr(m, "terms")
attr(Terms, "intercept") <- 0
y <- model.response(m)
w <- model.weights(m)
x <- model.matrix(Terms, m)
cons <- attr(x, "contrast")
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0) x <- x[, -xint, drop = FALSE]
out <- bagFDA.default(x = x, y = y, weights = weights, B = B, keepX = keepX, ...)
out
}
#' @rdname bagFDA
#' @method print bagFDA
#' @export
"print.bagFDA" <-
function (x, ...)
{
if(!is.null(x$x))cat("Data:\n # variables:\t", dim(x$x)[2], "\n # samples:\t", dim(x$x)[1], "\n")
cat(
"\nModel:",
"\n B: \t", x$B,
"\n dimension:\t", x$fit[[1]]$dimension,
"\n")
if(x$weights) cat("case weights used\n")
cat("\n")
invisible(x)
}
#' @rdname predict.bagEarth
#' @importFrom stats predict
#' @export
"predict.bagFDA" <-
function(object, newdata = NULL, type = "class", ...)
{
requireNamespaceQuietStop("mda")
requireNamespaceQuietStop("earth")
getTrainPred <- function(x)
{
oobIndex <- 1:nrow(x$fit$fitted.values)
oobIndex <- oobIndex[!(oobIndex %in% unique(x$index))]
tmp <- predict(x, type = "posterior")[oobIndex,,drop = FALSE]
rownames(tmp) <- 1:nrow(tmp)
out <- data.frame(pred = tmp,
sample = oobIndex,
check.rows = FALSE)
colnames(out)[1:ncol(tmp)] <- names(x$prior)
out
}
if(is.null(newdata) & !is.null(object$x)) newdata <- object$x
if(is.null(newdata))
{
pred <- lapply(object$fit, getTrainPred)
} else {
pred <- lapply(object$fit,
function(x, y)
{
tmp <- predict(x, newdata = y, type = "posterior")
nms <- colnames(tmp)
tmp <- as.data.frame(tmp, stringsAsFactors = FALSE)
names(tmp) <- nms
tmp$sample <- 1:nrow(tmp)
tmp
},
y = newdata)
}
pred <- rbind.fill(pred)
out <- ddply(pred, .(sample),
function(x) colMeans(x[,seq(along.with = object$levels)], na.rm = TRUE))
out <- out[,-1,drop = FALSE]
rownames(out) <- rownames(newdata)
predClass <- object$levels[apply(out, 1, which.max)]
predClass <- factor(predClass, levels = object$levels)
switch(type, class = predClass, probs = out, posterior = out)
}
#' @rdname summary.bagEarth
#' @method summary bagFDA
#' @importFrom stats quantile
#' @export
"summary.bagFDA" <-
function(object, ...)
{
oobStat <- apply(object$oob, 2, function(x) quantile(x, probs = c(0, 0.025, .5, .975, 1)))
numTerms <- unlist(lapply(object$fit, function(x) length(x$fit$selected.terms)))
numVar <- unlist(lapply(
object$fit,
function(x)
{
sum(
apply(
x$fit$dirs,
2,
function(u) any(u != 0)))
}))
modelInfo <- cbind(numTerms, numVar)
colnames(modelInfo) <- c("Num Terms", "Num Variables")
out <- list(modelInfo = modelInfo, oobStat = oobStat)
class(out) <- "summary.bagFDA"
out
}
#' @export
"print.summary.bagFDA" <-
function(x, digits = max(3, getOption("digits") - 3), ...)
{
oobStat <- apply(x$oob, 2, function(x) quantile(x, probs = c(0, 0.025, .25, .5, .75, .975, 1)))
cat("Out of bag statistics:\n\n")
print(x$oobStat, digits = digits)
cat("\nModel Selection Statistics:\n\n")
print(summary(x$modelInfo))
cat("\n")
}
|