1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
#' Probability Calibration Plot
#'
#' @name calibration
#' @aliases calibration calibration.formula calibration.default xyplot.calibration ggplot.calibration
#' panel.calibration
#'
#' @description For classification models, this function creates a 'calibration plot' that describes
#' how consistent model probabilities are with observed event rates.
#'
#' @param x a \code{lattice} formula (see \code{\link[lattice:xyplot]{xyplot}} for syntax) where the left
#' -hand side of the formula is a factor class variable of the observed outcome and the right-hand side
#' specifies one or model columns corresponding to a numeric ranking variable for a model (e.g. class
#' probabilities). The classification variable should have two levels.
#'
#' @param data For \code{calibration.formula}, a data frame (or more precisely, anything that is a valid
#' \code{envir} argument in \code{eval}, e.g., a list or an environment) containing values for any
#' variables in the formula, as well as \code{groups} and \code{subset} if applicable. If not found in
#' \code{data}, or if \code{data} is unspecified, the variables are looked for in the environment of the
#' formula. This argument is not used for \code{xyplot.calibration}. For \code{ggplot.calibration}, \code{data}
#' should be an object of class "\code{calibration}".
#'
#' @param class a character string for the class of interest
#'
#' @param cuts If a single number this indicates the number of splits of the data are used to create the
#' plot. By default, it uses as many cuts as there are rows in \code{data}. If a vector, these are the
#' actual cuts that will be used.
#'
#' @param subset An expression that evaluates to a logical or integer indexing vector. It is evaluated in
#' \code{data}. Only the resulting rows of \code{data} are used for the plot.
#'
#' @param lattice.options A list that could be supplied to \code{\link[lattice:lattice.options]{lattice.options}}
#'
#' @param bwidth,dwidth a numeric value for the confidence interval bar width and dodge width, respectively.
#' In the latter case, a dodge is only used when multiple models are specified in the formula.
#' @param \dots options to pass through to \code{\link[lattice:xyplot]{xyplot}} or the panel function (not
#' used in \code{calibration.formula}).
#'
#' @details
#' \code{calibration.formula} is used to process the data and \code{xyplot.calibration} is used to create the plot.
#'
#' To construct the calibration plot, the following steps are used for each model:
#'
#' \enumerate{
#' \item The data are split into \code{cuts - 1} roughly equal groups by their class probabilities
#' \item the number of samples with true results equal to \code{class} are determined
#' \item the event rate is determined for each bin}
#' \code{xyplot.calibration} produces a plot of the observed event rate by the mid-point of the bins.
#'
#' This implementation uses the \pkg{lattice} function \code{\link[lattice:xyplot]{xyplot}}, so plot
#' elements can be changed via panel functions, \code{\link[lattice:trellis.par.get]{trellis.par.set}} or
#' other means. \code{calibration} uses the panel function \code{\link{panel.calibration}} by default, but
#' it can be changed by passing that argument into \code{xyplot.calibration}.
#'
#' The following elements are set by default in the plot but can be changed by passing new values into
#' \code{xyplot.calibration}: \code{xlab = "Bin Midpoint"}, \code{ylab = "Observed Event Percentage"},
#' \code{type = "o"}, \code{ylim = extendrange(c(0, 100))},\code{xlim = extendrange(c(0, 100))} and
#' \code{panel = panel.calibration}
#'
#' For the \code{ggplot} method, confidence intervals on the estimated proportions (from
#' \code{\link[stats]{binom.test}}) are also shown.
#'
#' @return
#' \code{calibration.formula} returns a list with elements:
#' \item{data}{the data used for plotting}
#' \item{cuts}{the number of cuts}
#' \item{class}{the event class}
#' \item{probNames}{the names of the model probabilities}
#'
#' \code{xyplot.calibration} returns a \pkg{lattice} object
#'
#' @author Max Kuhn, some \pkg{lattice} code and documentation by Deepayan Sarkar
#'
#' @seealso \code{\link[lattice:xyplot]{xyplot}}, \code{\link[lattice:trellis.par.get]{trellis.par.set}}
#'
#' @examples
#' \dontrun{
#' data(mdrr)
#' mdrrDescr <- mdrrDescr[, -nearZeroVar(mdrrDescr)]
#' mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .5)]
#'
#'
#' inTrain <- createDataPartition(mdrrClass)
#' trainX <- mdrrDescr[inTrain[[1]], ]
#' trainY <- mdrrClass[inTrain[[1]]]
#' testX <- mdrrDescr[-inTrain[[1]], ]
#' testY <- mdrrClass[-inTrain[[1]]]
#'
#' library(MASS)
#'
#' ldaFit <- lda(trainX, trainY)
#' qdaFit <- qda(trainX, trainY)
#'
#' testProbs <- data.frame(obs = testY,
#' lda = predict(ldaFit, testX)$posterior[,1],
#' qda = predict(qdaFit, testX)$posterior[,1])
#'
#' calibration(obs ~ lda + qda, data = testProbs)
#'
#' calPlotData <- calibration(obs ~ lda + qda, data = testProbs)
#' calPlotData
#'
#' xyplot(calPlotData, auto.key = list(columns = 2))
#' }
#'
#' @keywords hplot
#'
#' @export
calibration <- function(x, ...) UseMethod("calibration")
#' @rdname calibration
#' @method calibration default
#' @export
calibration.default <- function(x, ...) stop("'x' should be a formula")
#' @rdname calibration
#' @method calibration formula
#' @export
calibration.formula <- function(x, data = NULL, class = NULL, cuts = 11, subset = TRUE, lattice.options = NULL, ...)
{
if (!is.null(lattice.options)) {
oopt <- lattice.options(lattice.options)
on.exit(lattice.options(oopt), add = TRUE)
}
formula <- x
groups <- NULL
subset <- eval(substitute(subset), data, environment(x))
form <- latticeParseFormula(formula, data, subset = subset,
groups = groups, multiple = TRUE, outer = TRUE,
subscripts = TRUE, drop = TRUE)
calibData <- data.frame(prob = form$y)
probNames <- strsplit(form$right.name, " + ", fixed = TRUE)[[1]]
calibData <- data.frame(calibClassVar = form$left,
calibProbVar = form$right)
calibData$calibModelVar <- if(length(probNames) > 1) form$condition[[length(form$condition)]] else probNames
if(length(form$condition) > 0 && any(names(form$condition) != ""))
{
ind <- sum(names(form$condition) != "")
tmp <- as.data.frame(form$condition[1:ind], stringsAsFactors = TRUE)
calibData <- cbind(calibData, tmp)
}
if(!is.factor(calibData$calibClassVar)) stop("the left-hand side of the formula must be a factor of classes")
splitVars <- names(calibData)[!(names(calibData) %in% c("calibClassVar", "calibProbVar"))]
if(is.null(class)) class <- levels(calibData$calibClassVar)[1]
plotData <- ddply(calibData, splitVars, calibCalc, class = class, cuts = cuts)
out <- list(data = plotData, cuts = cuts, class = class, probNames = probNames,
call = match.call())
class(out) <- "calibration"
out
}
#' @rdname calibration
#' @method print calibration
#' @export
print.calibration <- function(x, ...)
{
printCall(x$call)
cat("Models:", paste(unique(x$data$calibModelVar), collapse = ", "), "\n")
cat("Event: ", x$class, "\n")
cat("Cuts:", x$cuts, "\n")
invisible(x)
}
#' @importFrom stats binom.test
calibCalc <- function(x, class = levels(obs)[1], cuts = 11) {
if(length(cuts) == 1) {
num_cuts <- cuts
cuts <- (0:num_cuts)/num_cuts
} else {
cuts <- unique(c(0, cuts, 1))
num_cuts <- length(cuts)
}
binData <- data.frame(prob = x$calibProbVar,
bin = cut(x$calibProbVar, cuts, include.lowest = TRUE),
class = x$calibClassVar)
dataPoints <- ddply(binData,
.(bin),
function(x, cls) {
if(nrow(x) > 0) {
tmp <- binom.test(x = sum(x$class == cls), n = nrow(x))
out <- c(Percent = mean(x$class == cls)*100,
Lower = tmp$conf.int[1]*100,
Upper = tmp$conf.int[2]*100,
Count = sum(x$class == cls))
} else out <- c(Percent = NA, Lower = NA,
Upper = NA, Count = 0)
out
},
cls = class,
.drop = FALSE)
dataPoints$midpoint <- NA
for(i in 2:length(cuts))
dataPoints$midpoint[i-1] <- .5*(cuts[i] + cuts[i-1]) * 100
dataPoints$Percent <- ifelse(dataPoints$Count == 0, 0, dataPoints$Percent)
dataPoints
}
#' @method plot calibration
#' @export
plot.calibration <- function(x, y = NULL, ...)
xyplot(x = x, data = NULL, ...)
#' @rdname calibration
#' @method xyplot calibration
#' @importFrom stats as.formula
#' @importFrom grDevices extendrange
#' @export
xyplot.calibration <- function(x, data = NULL, ...){
lFormula <- "Percent ~ midpoint"
defaults <- c("calibModelVar", "bin", "Percent", "Count", "Lower", "Upper", "midpoint")
extras <- names(x$data)[!(names(x$data) %in% defaults)]
if(length(extras) > 0) lFormula <- paste(lFormula, paste(extras, collapse = "*"), sep = "|")
rng <- extendrange(c(0, 100))
opts <- list(...)
if(!any(names(opts) == "xlab")) opts$xlab <- "Bin Midpoint"
if(!any(names(opts) == "ylab")) opts$ylab <- "Observed Event Percentage"
if(!any(names(opts) == "type")) opts$type <- "o"
if(!any(names(opts) == "ylim")) opts$ylim <- rng
if(!any(names(opts) == "xlim")) opts$xlim <- rng
if(!any(names(opts) == "panel")) opts$panel <- panel.calibration
args <- list(x = as.formula(lFormula),
data = x$data)
if(length(x$probNames) > 1) args$groups <- x$data$calibModelVar
args <- c(args, opts)
do.call("xyplot", args)
}
#' @rdname calibration
#' @method ggplot calibration
#' @export
ggplot.calibration <- function(data, ..., bwidth = 2, dwidth = 3){
data$data$Model <- data$data$calibModelVar
mods <- length(unique(data$data$Model))
if(mods == 1) {
out <- ggplot(data$data, aes(x = midpoint, y = Percent)) +
geom_abline(slope = 1, intercept = 0, col = "black", lty = 2, alpha = .3) +
geom_point() +
geom_errorbar(aes(ymin = Lower, ymax = Upper), width = bwidth)
} else {
out <- ggplot(data$data, aes(x = midpoint, y = Percent,
group = Model, color = Model)) +
geom_abline(slope = 1, intercept = 0, col = "black", lty = 2, alpha = .3) +
geom_point(position = position_dodge(width = dwidth)) +
geom_errorbar(aes(ymin = Lower, ymax = Upper), width = bwidth,
position = position_dodge(width = dwidth))
}
out + xlab("Bin Midpoint") + ylab("Observed Event Percentage")
}
#' @export
panel.calibration <- function(...)
{
panel.abline(0, 1,
col = trellis.par.get("reference.line")$col,
lwd = trellis.par.get("reference.line")$lwd,
lty = trellis.par.get("reference.line")$lty)
panel.xyplot(...)
}
|