1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
#' Data Splitting functions
#'
#' A series of test/training partitions are created using
#' \code{createDataPartition} while \code{createResample} creates one or more
#' bootstrap samples. \code{createFolds} splits the data into \code{k} groups
#' while \code{createTimeSlices} creates cross-validation split for series data.
#' \code{groupKFold} splits the data based on a grouping factor.
#'
#'
#' For bootstrap samples, simple random sampling is used.
#'
#' For other data splitting, the random sampling is done within the levels of
#' \code{y} when \code{y} is a factor in an attempt to balance the class
#' distributions within the splits.
#'
#' For numeric \code{y}, the sample is split into groups sections based on
#' percentiles and sampling is done within these subgroups. For
#' \code{createDataPartition}, the number of percentiles is set via the
#' \code{groups} argument. For \code{createFolds} and \code{createMultiFolds},
#' the number of groups is set dynamically based on the sample size and
#' \code{k}. For smaller samples sizes, these two functions may not do
#' stratified splitting and, at most, will split the data into quartiles.
#'
#' Also, for \code{createDataPartition}, very small class sizes (<= 3) the
#' classes may not show up in both the training and test data
#'
#' For multiple k-fold cross-validation, completely independent folds are
#' created. The names of the list objects will denote the fold membership
#' using the pattern "Foldi.Repj" meaning the ith section (of k) of the jth
#' cross-validation set (of \code{times}). Note that this function calls
#' \code{createFolds} with \code{list = TRUE} and \code{returnTrain = TRUE}.
#'
#' Hyndman and Athanasopoulos (2013)) discuss rolling forecasting origin
#' techniques that move the training and test sets in time.
#' \code{createTimeSlices} can create the indices for this type of splitting.
#'
#' For Group k-fold cross-validation, the data are split such that no group
#' is contained in both the modeling and holdout sets. One or more group
#' could be left out, depending on the value of \code{k}.
#'
#' @aliases createDataPartition createResample createFolds createMultiFolds
#' createTimeSlices groupKFold
#' @param y a vector of outcomes. For \code{createTimeSlices}, these should be
#' in chronological order.
#' @param group a vector of groups whose length matches the number of rows in
#' the overall data set.
#' @param times the number of partitions to create
#' @param p the percentage of data that goes to training
#' @param list logical - should the results be in a list (\code{TRUE}) or a
#' matrix with the number of rows equal to \code{floor(p * length(y))} and
#' \code{times} columns.
#' @param groups for numeric \code{y}, the number of breaks in the quantiles
#' (see below)
#' @param k an integer for the number of folds.
#' @param returnTrain a logical. When true, the values returned are the sample
#' positions corresponding to the data used during training. This argument
#' only works in conjunction with \code{list = TRUE}
#' @param initialWindow The initial number of consecutive values in each
#' training set sample
#' @param horizon the number of consecutive values in test set sample
#' @param fixedWindow logical, if \code{FALSE}, all training samples start at 1
#' @param skip integer, how many (if any) resamples to skip to thin the total
#' amount
#' @return A list or matrix of row position integers corresponding to the
#' training data. For \code{createTimeSlices} subsamples are named by the end
#' index of each training subsample.
#' @author Max Kuhn, \code{createTimeSlices} by Tony Cooper
#' @references \url{http://topepo.github.io/caret/data-splitting.html}
#'
#' Hyndman and Athanasopoulos (2013), Forecasting: principles and practice.
#' \url{https://otexts.com/fpp2/}
#' @keywords utilities
#' @examples
#'
#' data(oil)
#' createDataPartition(oilType, 2)
#'
#' x <- rgamma(50, 3, .5)
#' inA <- createDataPartition(x, list = FALSE)
#'
#' plot(density(x[inA]))
#' rug(x[inA])
#'
#' points(density(x[-inA]), type = "l", col = 4)
#' rug(x[-inA], col = 4)
#'
#' createResample(oilType, 2)
#'
#' createFolds(oilType, 10)
#' createFolds(oilType, 5, FALSE)
#'
#' createFolds(rnorm(21))
#'
#' createTimeSlices(1:9, 5, 1, fixedWindow = FALSE)
#' createTimeSlices(1:9, 5, 1, fixedWindow = TRUE)
#' createTimeSlices(1:9, 5, 3, fixedWindow = TRUE)
#' createTimeSlices(1:9, 5, 3, fixedWindow = FALSE)
#'
#' createTimeSlices(1:15, 5, 3)
#' createTimeSlices(1:15, 5, 3, skip = 2)
#' createTimeSlices(1:15, 5, 3, skip = 3)
#'
#' set.seed(131)
#' groups <- sort(sample(letters[1:4], size = 20, replace = TRUE))
#' table(groups)
#' folds <- groupKFold(groups)
#' lapply(folds, function(x, y) table(y[x]), y = groups)
#' @export createDataPartition
createDataPartition <- function (y, times = 1, p = 0.5, list = TRUE, groups = min(5, length(y))){
if(inherits(y, "Surv")) y <- y[,"time"]
out <- vector(mode = "list", times)
if(length(y) < 2) stop("y must have at least 2 data points")
if(groups < 2) groups <- 2
if(is.numeric(y)) {
y <- cut(y,
unique(quantile(y, probs = seq(0, 1, length.out = groups))),
include.lowest = TRUE)
} else {
xtab <- table(y)
if(any(xtab == 0)) {
warning(paste("Some classes have no records (",
paste(names(xtab)[xtab == 0], sep = "", collapse = ", "),
") and these will be ignored"))
y <- factor(as.character(y))
}
if(any(xtab == 1)) {
warning(paste("Some classes have a single record (",
paste(names(xtab)[xtab == 1], sep = "", collapse = ", "),
") and these will be selected for the sample"))
}
}
subsample <- function(dat, p) {
if(nrow(dat) == 1) {
out <- dat$index
} else {
num <- ceiling(nrow(dat) * p)
out <- sample(dat$index, size = num)
}
out
}
for (j in 1:times) {
tmp <- dlply(data.frame(y = y, index = seq(along.with = y)),
.(y), subsample, p = p)
tmp <- sort(as.vector(unlist(tmp)))
out[[j]] <- tmp
}
if (!list) {
out <- matrix(unlist(out), ncol = times)
colnames(out) <- prettySeq(1:ncol(out))
} else {
names(out) <- prettySeq(out)
}
out
}
#' @rdname createDataPartition
#' @importFrom stats quantile
#' @export
"createFolds" <-
function(y, k = 10, list = TRUE, returnTrain = FALSE) {
if(inherits(y, "Surv")) y <- y[,"time"]
if(is.numeric(y)) {
## Group the numeric data based on their magnitudes
## and sample within those groups.
## When the number of samples is low, we may have
## issues further slicing the numeric data into
## groups. The number of groups will depend on the
## ratio of the number of folds to the sample size.
## At most, we will use quantiles. If the sample
## is too small, we just do regular unstratified
## CV
cuts <- floor(length(y)/k)
if(cuts < 2) cuts <- 2
if(cuts > 5) cuts <- 5
breaks <- unique(quantile(y, probs = seq(0, 1, length.out = cuts)))
y <- cut(y, breaks, include.lowest = TRUE)
}
if(k < length(y)) {
## reset levels so that the possible levels and
## the levels in the vector are the same
y <- factor(as.character(y))
numInClass <- table(y)
foldVector <- vector(mode = "integer", length(y))
## For each class, balance the fold allocation as far
## as possible, then resample the remainder.
## The final assignment of folds is also randomized.
for(i in 1:length(numInClass)) {
## create a vector of integers from 1:k as many times as possible without
## going over the number of samples in the class. Note that if the number
## of samples in a class is less than k, nothing is produced here.
min_reps <- numInClass[i] %/% k
if(min_reps > 0) {
spares <- numInClass[i] %% k
seqVector <- rep(1:k, min_reps)
## add enough random integers to get length(seqVector) == numInClass[i]
if(spares > 0) seqVector <- c(seqVector, sample(1:k, spares))
## shuffle the integers for fold assignment and assign to this classes's data
foldVector[which(y == names(numInClass)[i])] <- sample(seqVector)
} else {
## Here there are less records in the class than unique folds so
## randomly sprinkle them into folds.
foldVector[which(y == names(numInClass)[i])] <- sample(1:k, size = numInClass[i])
}
}
} else foldVector <- seq(along.with = y)
if(list) {
out <- split(seq(along.with = y), foldVector)
names(out) <- paste("Fold", gsub(" ", "0", format(seq(along.with = out))), sep = "")
if(returnTrain) out <- lapply(out, function(data, y) y[-data], y = seq(along.with = y))
} else out <- foldVector
out
}
#' @rdname createDataPartition
#' @export
createMultiFolds <- function(y, k = 10, times = 5) {
if(inherits(y, "Surv")) y <- y[,"time"]
prettyNums <- paste("Rep", gsub(" ", "0", format(1:times)), sep = "")
for(i in 1:times) {
tmp <- createFolds(y, k = k, list = TRUE, returnTrain = TRUE)
names(tmp) <- paste("Fold",
gsub(" ", "0", format(seq(along.with = tmp))),
".",
prettyNums[i],
sep = "")
out <- if(i == 1) tmp else c(out, tmp)
}
out
}
## From Tony Cooper <tonyc@iconz.co.nz> on 1/9/13
#' @rdname createDataPartition
#' @export
createTimeSlices <- function(y, initialWindow, horizon = 1, fixedWindow = TRUE, skip = 0) {
## initialwindow = initial number of consecutive values in each training set sample
## horizon = number of consecutive values in test set sample
## fixedwindow = FALSE if we use the maximum possible length for the training set
## Ensure that initialwindow + horizon <= length(y)
stops <- seq(initialWindow, (length(y) - horizon), by = skip + 1)
if (fixedWindow) {
starts <- stops - initialWindow + 1
} else {
starts <- rep(1, length(stops)) # all start at 1
}
train <- mapply(seq, starts, stops, SIMPLIFY = FALSE)
test <- mapply(seq, stops+1, stops+horizon, SIMPLIFY = FALSE)
nums <- gsub(" ", "0", format(stops))
names(train) <- paste("Training", nums, sep = "")
names(test) <- paste("Testing", nums, sep = "")
out <- list(train = train, test = test)
out
}
#' @rdname createDataPartition
#' @export
groupKFold <- function(group, k = length(unique(group))) {
g_unique <- unique(group)
m <- length(g_unique)
if (k > m) {
stop("`k` should be less than ", m)
}
g_folds <- sample(k, size = m, replace = TRUE)
# Distribute obs to hold-out
out <- split(seq_along(group), g_folds[match(group, g_unique)])
names(out) <- paste0("Fold", gsub(" ", "0", format(seq_along(out))))
# Switch from hold-out to fold
lapply(out, function(z) seq_along(group)[-z])
}
make_resamples <- function(ctrl_obj, outcome) {
n <- length(outcome)
if(is.null(ctrl_obj$index)) {
if(ctrl_obj$method == "custom")
stop("'custom' resampling is appropriate when the `trControl` argument `index` is used", call. = FALSE)
ctrl_obj$index <-
switch(tolower(ctrl_obj$method),
oob = NULL,
none = list(seq(along.with = outcome)),
apparent = list(all = seq(along.with = outcome)),
alt_cv =, cv = createFolds(outcome, ctrl_obj$number, returnTrain = TRUE),
repeatedcv =, adaptive_cv = createMultiFolds(outcome, ctrl_obj$number, ctrl_obj$repeats),
loocv = createFolds(outcome, n, returnTrain = TRUE),
boot =, boot632 =, optimism_boot =, boot_all =,
adaptive_boot = createResample(outcome, ctrl_obj$number),
test = createDataPartition(outcome, 1, ctrl_obj$p),
adaptive_lgocv =, lgocv = createDataPartition(outcome, ctrl_obj$number, ctrl_obj$p),
timeslice = createTimeSlices(seq(along.with = outcome),
initialWindow = ctrl_obj$initialWindow,
horizon = ctrl_obj$horizon,
fixedWindow = ctrl_obj$fixedWindow,
skip = ctrl_obj$skip)$train,
stop("Not a recognized resampling method.", call. = FALSE))
} else {
index_types <- unlist(lapply(ctrl_obj$index, is.integer))
if(!isTRUE(all(index_types)))
stop("`index` should be lists of integers.", call. = FALSE)
if(!is.null(ctrl_obj$indexOut)) {
index_types <- unlist(lapply(ctrl_obj$indexOut, is.integer))
if(!isTRUE(all(index_types)))
stop("`indexOut` should be lists of integers.", call. = FALSE)
}
}
if(ctrl_obj$method == "apparent")
ctrl_obj$indexOut <- list(all = seq(along.with = outcome))
## Create holdout indices
if(is.null(ctrl_obj$indexOut) && ctrl_obj$method != "oob"){
if(tolower(ctrl_obj$method) != "timeslice") {
y_index <-
if (inherits(outcome, "Surv"))
1:nrow(outcome)
else
seq(along.with = outcome)
ctrl_obj$indexOut <-
lapply(ctrl_obj$index, function(training)
setdiff(y_index, training))
if(ctrl_obj$method %in% c("optimism_boot", "boot_all")) {
ctrl_obj$indexExtra <- lapply(ctrl_obj$index, function(training) {
list(origIndex = y_index, bootIndex = training)
})
}
names(ctrl_obj$indexOut) <- prettySeq(ctrl_obj$indexOut)
} else {
ctrl_obj$indexOut <-
createTimeSlices(seq(along.with = outcome),
initialWindow = ctrl_obj$initialWindow,
horizon = ctrl_obj$horizon,
fixedWindow = ctrl_obj$fixedWindow,
skip = ctrl_obj$skip)$test
}
}
if(ctrl_obj$method != "oob" & is.null(ctrl_obj$index))
names(ctrl_obj$index) <- prettySeq(ctrl_obj$index)
if(ctrl_obj$method != "oob" & is.null(names(ctrl_obj$index)))
names(ctrl_obj$index) <- prettySeq(ctrl_obj$index)
if(ctrl_obj$method != "oob" & is.null(names(ctrl_obj$indexOut)))
names(ctrl_obj$indexOut) <- prettySeq(ctrl_obj$indexOut)
ctrl_obj
}
|