1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
|
ga_internal_names <- c('Iter','Size','Similarity','Similarity_M','Resample')
ga_external_names <- c('Iter','Resample')
check_ga_pop <- function(x) {
no_vars <- apply(x, 1, sum) == 0
if(any(no_vars)) {
for(i in which(no_vars)) {
here <- sample(1:ncol(x), 1)
x[i,here] <- 1
}
}
x
}
ga_func_check <- function(x) {
fnames <- names(x)
required <- c('fit', 'fitness_intern', 'pred', 'fitness_extern',
'initial', 'selection', 'crossover', 'mutation',
'selectIter')
missing <- !(required %in% fnames)
if(any(missing))
stop(paste("The following functions are missing from the 'func' argument:",
paste(required[missing], sep = "", collapse = ",")))
invisible(x)
args <- lapply(x, function(x) names(formals(x)))
expected <- list(fit = c('x', 'y', 'lev', 'last', '...'),
fitness_intern = c('object', 'x', 'y', 'maximize', 'p'),
pred = c('object', 'x'),
initial = c('vars', 'popSize', '...'),
selection = c('population', 'fitness', 'r', 'q', '...'),
crossover = c('population', 'fitness', 'parents', '...'),
mutation = c('population', 'parent', '...'),
selectIter = c('x', 'metric', 'maximize'))
check_names <- names(x)
check_names <- check_names[check_names != "fitness_extern"]
for(i in check_names) {
.args <- names(formals(x[[i]]))
.check <- same_args(.args, expected[[i]])
if(!.check) {
stop(paste("Arguments to function", i, "should be {",
paste(expected[[i]], sep = "", collapse = ", "),
"} and these were given {",
paste(.args, sep = "", collapse = ", "), "}\n"))
}
}
}
#' Ancillary genetic algorithm functions
#'
#' @description
#' Built-in functions related to genetic algorithms
#'
#' These functions are used with the \code{functions} argument of the
#' \code{\link{gafsControl}} function. More information on the details of these
#' functions are at \url{http://topepo.github.io/caret/feature-selection-using-genetic-algorithms.html}.
#'
#' Most of the \code{gafs_*} functions are based on those from the GA package
#' by Luca Scrucca. These functions here are small re-writes to work outside of
#' the GA package.
#'
#' The objects \code{caretGA}, \code{rfGA} and \code{treebagGA} are example
#' lists that can be used with the \code{functions} argument of
#' \code{\link{gafsControl}}.
#'
#' In the case of \code{caretGA}, the \code{...} structure of
#' \code{\link{gafs}} passes through to the model fitting routine. As a
#' consequence, the \code{\link{train}} function can easily be accessed by
#' passing important arguments belonging to \code{\link{train}} to
#' \code{\link{gafs}}. See the examples below. By default, using \code{caretGA}
#' will used the resampled performance estimates produced by
#' \code{\link{train}} as the internal estimate of fitness.
#'
#' For \code{rfGA} and \code{treebagGA}, the \code{randomForest} and
#' \code{bagging} functions are used directly (i.e. \code{\link{train}} is not
#' used). Arguments to either of these functions can also be passed to them
#' though the \code{\link{gafs}} call (see examples below). For these two
#' functions, the internal fitness is estimated using the out-of-bag estimates
#' naturally produced by those functions. While faster, this limits the user to
#' accuracy or Kappa (for classification) and RMSE and R-squared (for
#' regression).
#'
#' @aliases gafs_initial gafs_lrSelection gafs_rwSelection gafs_tourSelection
#' gafs_uCrossover gafs_spCrossover gafs_raMutation caretGA rfGA treebagGA
#' @param vars number of possible predictors
#' @param popSize the population size passed into \code{\link{gafs}}
#' @param population a binary matrix of the current subsets with predictors in
#' columns and individuals in rows
#' @param fitness a vector of fitness values
#' @param parent,parents integer(s) for which chromosomes are altered
#' @param r,q,k tuning parameters for the specific selection operator
#' @param \dots not currently used
#' @return The return value depends on the function.
#' @author Luca Scrucca, \code{gafs_initial}, \code{caretGA}, \code{rfGA} and
#' \code{treebagGA} by Max Kuhn
#' @seealso \code{\link{gafs}}, \code{\link{gafsControl}}
#' @references Scrucca L (2013). GA: A Package for Genetic Algorithms in R.
#' Journal of Statistical Software, 53(4), 1-37.
#'
#' \url{https://cran.r-project.org/package=GA}
#'
#' \url{http://topepo.github.io/caret/feature-selection-using-genetic-algorithms.html}
#' @examples
#'
#' pop <- gafs_initial(vars = 10, popSize = 10)
#' pop
#'
#' gafs_lrSelection(population = pop, fitness = 1:10)
#'
#' gafs_spCrossover(population = pop, fitness = 1:10, parents = 1:2)
#'
#'
#' \dontrun{
#' ## Hypothetical examples
#' lda_ga <- gafs(x = predictors,
#' y = classes,
#' gafsControl = gafsControl(functions = caretGA),
#' ## now pass arguments to `train`
#' method = "lda",
#' metric = "Accuracy"
#' trControl = trainControl(method = "cv", classProbs = TRUE))
#'
#' rf_ga <- gafs(x = predictors,
#' y = classes,
#' gafsControl = gafsControl(functions = rfGA),
#' ## these are arguments to `randomForest`
#' ntree = 1000,
#' importance = TRUE)
#' }
#'
#'
#' @export gafs_initial
gafs_initial <- function (vars, popSize, ...) {
x <- matrix(NA, nrow = popSize, ncol = vars)
probs <- seq(.9, .1, length.out = popSize)
for(i in 1:popSize){
x[i,] <- sample(0:1, replace = TRUE,
size = vars,
prob = c(probs[i], 1-probs[i]))
}
var_count <- apply(x, 1, sum)
if(any(var_count == 0)) {
for(i in which(var_count == 0)) {
x[i, ] <- sample(0:1, replace = TRUE, size = vars)
}
}
x
}
#' @rdname gafs_initial
#' @export
gafs_lrSelection <- function (population, fitness,
r = NULL,
q = NULL, ...) {
popSize = nrow(population)
if(is.null(r)) r <- 2/(popSize * (popSize - 1))
if(is.null(q)) q <- 2/popSize
rank <- (popSize + 1) - rank(fitness, ties.method = "random")
prob <- q - (rank - 1) * r
sel <- sample(1:popSize,
size = popSize,
prob = pmin(pmax(0, prob), 1, na.rm = TRUE),
replace = TRUE)
out <- list(population = population[sel, , drop = FALSE],
fitness = fitness[sel])
out
}
#' @rdname gafs_initial
#' @export
gafs_spCrossover <- function (population, fitness, parents, ...) {
fitness <- fitness[parents]
parents <- population[parents, , drop = FALSE]
n <- ncol(parents)
children <- matrix(as.double(NA), nrow = 2, ncol = n)
fitnessChildren <- rep(NA, 2)
crossOverPoint <- sample(0:n, size = 1)
if (crossOverPoint == 0) {
children[1:2, ] <- parents[2:1, ]
fitnessChildren[1:2] <- fitness[2:1]
}
else if (crossOverPoint == n) {
children <- parents
fitnessChildren <- fitness
}
else {
children[1, ] <- c(parents[1, 1:crossOverPoint], parents[2, (crossOverPoint + 1):n])
children[2, ] <- c(parents[2, 1:crossOverPoint], parents[1, (crossOverPoint + 1):n])
}
out <- list(children = children, fitness = fitnessChildren)
out
}
#' @rdname gafs_initial
#' @export
gafs_raMutation <- function (population, parent, ...) {
mutate <- parent <- as.vector(population[parent, ])
n <- length(parent)
j <- sample(1:n, size = 1)
mutate[j] <- abs(mutate[j] - 1)
mutate
}
#' @rdname gafs_initial
gafs_nlrSelection <- function (population, fitness, q = 0.25, ...) {
popSize <- nrow(population)
rank <- (popSize + 1) - rank(fitness, ties.method = "random")
prob <- q * (1 - q)^(rank - 1)
sel <- sample(1:popSize, size = popSize,
prob = pmin(pmax(0, prob), 1, na.rm = TRUE), replace = TRUE)
out <- list(population = population[sel, , drop = FALSE],
fitness = fitness[sel])
return(out)
}
#' @rdname gafs_initial
#' @export
gafs_rwSelection <- function (population, fitness, ...) {
popSize <- nrow(population)
prob <- abs(fitness)/sum(abs(fitness))
sel <- sample(1:popSize, size = popSize,
prob = pmin(pmax(0, prob), 1, na.rm = TRUE), replace = TRUE)
out <- list(population = population[sel, , drop = FALSE],
fitness = fitness[sel])
return(out)
}
#' @rdname gafs_initial
#' @export
gafs_tourSelection <- function (population, fitness, k = 3, ...) {
popSize <- nrow(population)
sel <- rep(NA, popSize)
for (i in 1:popSize) {
s <- sample(1:popSize, size = k)
sel[i] <- s[which.max(fitness[s])]
}
out <- list(population = population[sel, , drop = FALSE],
fitness = fitness[sel])
return(out)
}
#' @rdname gafs_initial
#' @importFrom stats runif
#' @export
gafs_uCrossover <- function (population, parents, ...) {
parents <- population[parents, , drop = FALSE]
n <- ncol(parents)
u <- runif(n)
children <- parents
children[1:2, u > 0.5] <- children[2:1, u > 0.5]
out <- list(children = children, fitness = rep(NA, 2))
return(out)
}
###################################################################
##
#' @rdname safsControl
#' @export
gafsControl <- function(functions = NULL,
method = "repeatedcv",
metric = NULL,
maximize = NULL,
number = ifelse(grepl("cv", method), 10, 25),
repeats = ifelse(grepl("cv", method), 1, 5),
verbose = FALSE,
returnResamp = "final",
p = .75,
index = NULL,
indexOut = NULL,
seeds = NULL,
holdout = 0,
genParallel = FALSE,
allowParallel = TRUE) {
if(!(method %in% c("cv", "boot", "repeatedcv", "LGOCV", "LOOCV")))
stop('method should be one of: "cv", "boot", "repeatedcv", "LGOCV" or "LOOCV"')
if(holdout < 0 | holdout >= 1) stop("'holdout' should be in [0, 1)")
if(!is.null(metric)) {
if(length(metric) != 2)
stop("'metric' should be a two-element named vector. See ?gafsControl")
if(is.null(names(metric)) || any(sort(names(metric)) != c("external", "internal")))
stop("'metric' should have names 'internal' and 'external' See ?gafsControl")
}
if(!is.null(maximize)) {
if(length(maximize) != 2)
stop("'maximize' should be a two-element named vector. See ?gafsControl")
if(is.null(names(maximize)) || any(sort(names(maximize)) != c("external", "internal")))
stop("'maximize' should have names 'internal' and 'external' See ?gafsControl")
}
list(functions = if(is.null(functions)) caretFuncs else functions,
method = method,
metric = metric,
maximize = maximize,
number = number,
repeats = repeats,
returnResamp = returnResamp,
verbose = verbose,
p = p,
index = index,
indexOut = indexOut,
seeds = seeds,
holdout = holdout,
genParallel = genParallel,
allowParallel = allowParallel)
}
###################################################################
##
ga_wrapper <- function(ind, x, y, funcs, holdoutX, holdoutY, testX, testY,
perf, holdoutPerf, testPerf,
ga_metric, ga_maximize, lvl = lvl, last = FALSE, indiv = 0, ...) {
mod <- funcs$fit(x[, ind, drop=FALSE], y, lev = lvl, last = last,...)
if (!is.null(holdoutX)) {
intern_x <- holdoutX[, ind, drop = FALSE]
if(!is.null(holdoutPerf))
intern_x <- cbind(intern_x, holdoutPerf)
} else {
intern_x <- x[, ind, drop = FALSE]
if(!is.null(perf))
intern_x <- cbind(intern_x, perf)
}
internal <-
funcs$fitness_intern(
mod,
x = intern_x,
y = if(!is.null(holdoutY)) holdoutY else y,
p = ncol(x)
)
if(!is.null(testX)) {
modelPred <- funcs$pred(mod, testX[, ind, drop=FALSE])
if(is.data.frame(modelPred) | is.matrix(modelPred)) {
if(is.matrix(modelPred)) modelPred <- as.data.frame(modelPred, stringsAsFactors = TRUE)
modelPred$obs <- testY
modelPred$Size <- length(ind)
} else modelPred <- data.frame(pred = modelPred, obs = testY, Size = sum(ind == 1))
if(!is.null(testPerf))
modelPred <- cbind(modelPred, testPerf)
external <- funcs$fitness_extern(modelPred, lev = levels(testY))
if(is.null(names(external))) {
names(external) <- paste0("external", 1:length(external))
}
} else external <- NULL
if(!ga_maximize["internal"]) internal[ga_metric["internal"]] <- -internal[ga_metric["internal"]]
list(internal = c(internal, .indiv = indiv),
external = c(external, .indiv = indiv))
}
###################################################################
##
#' @importFrom stats runif
#' @import foreach
ga_select <- function(x, y, perf = NULL,
testX = NULL, testY = NULL, testPerf = NULL,
iters = 20,
funcs = NULL,
ga_metric = NULL,
ga_maximize = TRUE,
ga_verbose = TRUE,
holdout = 0,
ga_seed = NULL,
lvl = NULL,
popSize = 50,
pcrossover = 0.8,
pmutation = 0.1,
elite = base::max(1, round(popSize*0.05)),
maxfitness = Inf,
suggestions = NULL,
genParallel = FALSE,
Resample = "",
...) {
ga_func_check(funcs)
nvars <- ncol(x)
if(!is.null(ga_seed)) set.seed(ga_seed[1])
dig <- options()$digits
if(holdout > 0) {
in_holdout <- createDataPartition(y,
p = holdout,
list = FALSE)
holdout_x <- x[in_holdout,,drop = FALSE]
holdout_y <- y[in_holdout]
holdout_perf <- perf[in_holdout,,drop = FALSE]
x <- x[-in_holdout,,drop = FALSE]
y <- y[-in_holdout]
perf <- perf[-in_holdout,,drop = FALSE]
} else {
holdout_x <- NULL
holdout_y <- NULL
holdout_perf <- NULL
}
###################################################################
##
subsets <- vector(mode = "list", length = iters)
internal <- data.frame(Iter = 1:(iters),
Size = rep(0*NA, iters),
Similarity = rep(0*NA, iters),
Similarity_M= rep(0*NA, iters),
stringsAsFactors = FALSE)
external <- if(!is.null(testX)) data.frame(Iter = 1:(iters)) else NULL
## add GA package warnings
###################################################################
## From GA package:
## TODO make input a vector of indicies
if(is.null(suggestions)) {
suggestions <- matrix(nrow = 0, ncol = nvars)
} else {
if(is.vector(suggestions)) {
if(nvars > 1) suggestions <- matrix(suggestions, nrow = 1)
else suggestions <- matrix(suggestions, ncol = 1)
} else suggestions <- as.matrix(suggestions)
if(nvars != ncol(suggestions))
stop("Provided suggestions (ncol) matrix do not match number of variables of the problem!")
}
###################################################################
## From GA package:
Pop <- matrix(as.double(NA), nrow = popSize, ncol = nvars)
ng <- min(nrow(suggestions), popSize)
if(ng > 0) { # use suggestion if provided
Pop[1:ng,] <- suggestions
}
# fill the rest with a random population
if(popSize > ng) {
Pop[(ng+1):popSize,] <- funcs$initial(vars = nvars, popSize = popSize)[1:(popSize-ng),]
}
colnames(Pop) <- colnames(x)
.Pop <- Pop
.Fit <- rep(NA, nrow(Pop))
###################################################################
##
`%op%` <- getOper(genParallel && getDoParWorkers() > 1)
for(generation in 1:iters) {
Pop <- check_ga_pop(Pop)
currennt_results <-
foreach(
i = seq_len(popSize),
.combine = "c",
.verbose = FALSE,
.errorhandling = "stop",
.packages = "recipes") %op% {
ga_wrapper(ind = which(Pop[i,] == 1),
x = x, y = y, perf = perf,
funcs,
holdoutX = holdout_x, holdoutY = holdout_y,
holdoutPerf = holdout_perf,
testX = testX, testY = testY,
testPerf = testPerf,
ga_metric = ga_metric,
ga_maximize = ga_maximize,
lvl = lvl,
last = Resample == "",
indiv = i,
...
)
} ## loop over chromosomes
## TODO save only the parts you need inside of loop
if(!is.null(testX)) {
current_ext <- currennt_results[names(currennt_results) == "external"]
current_ext <- do.call("rbind", current_ext)
current_ext <- current_ext[order(current_ext[,".indiv"]),]
current_ext <- current_ext[, -ncol(current_ext), drop = FALSE]
rownames(current_ext) <- NULL
} else current_ext <- NULL
current_int <- currennt_results[names(currennt_results) == "internal"]
current_int <- do.call("rbind", current_int)
current_int <- current_int[order(current_int[,".indiv"]),]
current_int <- current_int[, -ncol(current_int), drop = FALSE]
rownames(current_int) <- NULL
rm(currennt_results)
Fitness <- if(is.matrix(current_int)) current_int[,ga_metric["internal"]]
best_index <- which.max(Fitness)
best_internal <- current_int[best_index,]
if(!is.null(testX)) best_external <- current_ext[best_index,]
subsets[[generation]] <- which(Pop[best_index,] == 1)
internal$Size[generation] <- sum(Pop[best_index,] == 1)
if(generation > 1) {
hist_best <- which.max(internal[1:(generation-1), ga_metric["internal"]])
internal$Similarity[generation] <- jack_sim(index2vec(subsets[[hist_best]], ncol(Pop)),
index2vec(subsets[[generation]], ncol(Pop)))
tmp_sim <- apply(Pop, 1, function(x, y) jack_sim(x, y),
y = index2vec(subsets[[hist_best]], ncol(Pop)))
internal$Similarity_M[generation] <- mean(tmp_sim, na.rm = TRUE)
}
.Pop <- Pop
.Fit <- Fitness
if(generation == 1) {
k <- length(best_internal)
perf_names <- names(best_internal)
for(new_var in perf_names) internal[,new_var] <- NA
nr <- ncol(internal)
internal[1, (nr-k+1):nr] <- best_internal
if(!is.null(testX)) {
for(new_var in names(best_external)) external[,new_var] <- NA
external[1, -1] <- best_external
}
} else {
internal[generation, (nr-k+1):nr] <- best_internal
if(!is.null(testX)) external[generation, -1] <- best_external
}
if(ga_verbose){
if(generation > 1) {
imp <- internal[hist_best, ga_metric["internal"]] < max(Fitness)
cat(Resample, " ", format(1:iters)[generation], " ",
if(ga_maximize["internal"])
signif( internal[hist_best, ga_metric["internal"]], digits = dig) else
signif(-internal[hist_best, ga_metric["internal"]], digits = dig),
"->" ,
if(ga_maximize["internal"])
signif(max(Fitness), digits = dig) else
signif( min(-Fitness), digits = dig),
change_text(subsets[[hist_best]], subsets[[generation]], nvars, show_diff = FALSE),
if(imp) " *" else "",
"\n",
sep = "")
} else {
cat(Resample, " ", format(1:iters)[generation], " ",
if(ga_maximize["internal"])
signif(internal[1, ga_metric["internal"]], digits = dig) else
signif(-internal[1, ga_metric["internal"]], digits = dig),
" (", length(subsets[[1]]), ")\n",
sep = "")
}
}
###################################################################
## From GA package
ord <- order(Fitness, decreasing = TRUE)
PopSorted <- Pop[ord,,drop = FALSE]
FitnessSorted <- Fitness[ord]
# selection
if(is.function(funcs$selection)) {
sel <- funcs$selection(population = .Pop, fitness = .Fit)
Pop <- sel$population
Fitness <- sel$fitness
} else {
sel <- sample(1:popSize, size = popSize, replace = TRUE)
Pop <- .Pop[sel,]
Fitness <- .Fit[sel]
}
.Pop <- Pop
.Fit <- Fitness
# crossover
if(is.function(funcs$crossover) & pcrossover > 0) {
nmating <- floor(popSize/2)
mating <- matrix(sample(1:(2*nmating), size = (2*nmating)), ncol = 2)
for(i in seq_len(nmating)) {
if(pcrossover > runif(1)){
parents <- mating[i,]
Crossover <- funcs$crossover(population = .Pop,
fitness = .Fit,
parents = parents)
Pop[parents,] <- Crossover$children
Fitness[parents] <- Crossover$fitness
}
}
.Pop <- Pop
.Fit <- Fitness
}
# mutation
pm <- if(is.function(pmutation)) pmutation(object) else pmutation
if(is.function(funcs$mutation) & pm > 0) {
for(i in seq_len(popSize)) {
if(pm > runif(1)) {
Mutation <- funcs$mutation(population = .Pop, parent = i)
Pop[i,] <- Mutation
Fitness[i] <- NA
}
}
.Pop <- Pop
.Fit <- Fitness
}
# elite
if(elite > 0) {
ord <- order(.Fit, na.last = TRUE)
u <- which(!duplicated(PopSorted, margin = 1))
Pop[ord[1:elite],] <- PopSorted[u[1:elite],]
Fitness[ord[1:elite]] <- FitnessSorted[u[1:elite]]
.Pop <- Pop
.Fit <- Fitness
}
} ## search iterations
best_index <- which.max(internal[, ga_metric["internal"]])
best_subset <- colnames(x)[subsets[[best_index]]]
if(!ga_maximize["internal"]) {
internal[, ga_metric["internal"]] <- -internal[, ga_metric["internal"]]
}
mod <- funcs$fit(x[, best_subset, drop=FALSE], y, lev = lvl, last = TRUE, ...)
if(Resample != "") internal$Resample <- Resample
if(Resample != "" && !is.null(testX)) external$Resample <- Resample
diffs <- try(get_fitness_differences(colnames(x),
subsets,
external[, !(names(external) %in% ga_external_names), drop = FALSE]),
silent = TRUE)
if (inherits(diffs, "try-error")) diffs <- NULL
list(internal = internal,
subsets = subsets,
external = external,
final = best_subset,
fit = mod,
diffs = diffs)
}
###################################################################
##
#' @importFrom utils getFromNamespace
#' @export
print.gafs <- function (x, top = 5,
digits = max(3, getOption("digits") - 3),
...) {
cat("\nGenetic Algorithm Feature Selection\n\n")
cat(x$dims[1],
" samples\n",
x$dims[2],
" predictor", ifelse(x$dims[2] > 1, "s\n", "\n"),
sep = "")
if(!is.null(x$levels)){
cat(length(x$levels),
"classes:",
paste("'", x$levels, "'", sep = "", collapse = ", "),
"\n")
}
cat("\n")
cat("Maximum generations:", max(x$iters), "\n")
cat("Population per generation:", x$ga_param$popSize, "\n")
cat("Crossover probability:", x$ga_param$pcrossover, "\n")
if(is.function(x$ga_param$pmutation)) {
cat("Mutation probability: variable\n")
} else cat("Mutation probability:", x$ga_param$pmutation, "\n")
cat("Elitism:", x$ga_param$elite, "\n\n")
inames <- names(x$internal)
inames <- inames[!(inames %in% ga_internal_names)]
enames <- names(x$external)
enames <- enames[!(enames %in% ga_external_names)]
cat("Internal performance value", ifelse(length(inames) > 1, "s: ", ": "),
paste(inames, sep = "", collapse = ", "), "\n", sep = "")
cat("Subset selection driven to",
if(x$control$maximize["internal"]) "maximize internal" else "minimize internal",
x$control$metric["internal"], "\n")
cat("\n")
cat("External performance value", ifelse(length(enames) > 1, "s: ", ": "),
paste(enames, sep = "", collapse = ", "), "\n", sep = "")
if(x$auto) {
cat("Best iteration chose by",
if(x$control$maximize["external"]) "maximizing external" else "minimizing external",
x$control$metric["external"], "\n")
} else {
cat("Best iteration chosen manually\n")
}
resampleN <- unlist(lapply(x$control$index, length))
numResamp <- length(resampleN)
resampText <- getFromNamespace("resampName", "caret")(x)
cat("External resampling method:", resampText, "\n")
if(x$control$holdout > 0)
cat("Subsampling for internal fitness calculation: ",
round(x$control$holdout*100, digits), "%\n", sep = "")
cat("\n")
vars <- sort(table(unlist(x$resampled_vars)), decreasing = TRUE)
top <- min(top, length(vars))
smallVars <- vars[1:top]
smallVars <- round(smallVars/length(x$control$index)*100, 1)
varText <- paste0(names(smallVars), " (", smallVars, "%)")
varText <- paste(varText, collapse = ", ")
if(!all(is.na(smallVars))) {
cat("During resampling:\n * the top ",
top,
" selected variables (out of a possible ",
x$dims[2],
"):\n ",
varText,
"\n",
sep = "")
cat(" * on average, ",
round(mean(unlist(lapply(x$resampled_vars, length))), 1),
" variables were selected (min = ",
round(min(unlist(lapply(x$resampled_vars, length))), 1),
", max = ",
round(max(unlist(lapply(x$resampled_vars, length))), 1),
")\n\n",
sep = "")
} else {
cat("During resampling, no variables were selected.\n\n")
}
cat("In the final search using the entire training set:\n",
" *", length(x$optVariables), "features selected at iteration",
x$optIter, "including:\n ",
paste(x$optVariables[1:min(length(x$optVariables), top)],
sep = "", collapse = ", "),
if(length(x$optVariables) > top) "..." else "",
"\n")
perf_dat <- subset(x$external, Iter == x$optIter)
perf_dat <- perf_dat[!(names(perf_dat) %in% c("Iter", "Resample"))]
perf <- colMeans(perf_dat)
cat(" * external performance at this iteration is\n\n")
ch_perf <- format(perf, digits = digits, row.names = FALSE)
ch_perf[1] <- paste(" ", ch_perf[1])
print(ch_perf, quote = FALSE)
cat("\n")
invisible(x)
}
#' Predict new samples
#'
#' Predict new samples using \code{\link{safs}} and \code{\link{gafs}} objects.
#'
#' Only the predictors listed in \code{object$optVariables} are required.
#'
#' @aliases predict.gafs predict.safs
#' @param object an object of class \code{\link{safs}} or \code{\link{gafs}}
#' @param newdata a data frame or matrix of predictors.
#' @param \dots not currently used
#' @return The type of result depends on what was specified in
#' \code{object$control$functions$predict}.
#' @author Max Kuhn
#' @seealso \code{\link{safs}}, \code{\link{gafs}}
#' @keywords multivariate
#' @method predict gafs
#' @export
#' @examples
#'
#' \dontrun{
#'
#' set.seed(1)
#' train_data <- twoClassSim(100, noiseVars = 10)
#' test_data <- twoClassSim(10, noiseVars = 10)
#'
#' ## A short example
#' ctrl <- safsControl(functions = rfSA,
#' method = "cv",
#' number = 3)
#'
#' rf_search <- safs(x = train_data[, -ncol(train_data)],
#' y = train_data$Class,
#' iters = 3,
#' safsControl = ctrl)
#'
#' rf_search
#'
#' predict(rf_search, train_data)
#' }
#'
#' @export predict.gafs
predict.gafs <- function (object, newdata, ...) {
if (any(names(object) == "recipe") && !is.null(object$recipe)) {
newdata <-
bake(object$recipe, newdata, all_predictors(), composition = "data.frame")
} else {
newdata <- newdata[, object$optVariables, drop = FALSE]
}
object$control$functions$pred(object$fit, newdata)
}
###################################################################
##
#' @export
gafs <- function (x, ...) UseMethod("gafs")
#' Genetic algorithm feature selection
#'
#' Supervised feature selection using genetic algorithms
#'
#' \code{\link{gafs}} conducts a supervised binary search of the predictor
#' space using a genetic algorithm. See Mitchell (1996) and Scrucca (2013) for
#' more details on genetic algorithms.
#'
#' This function conducts the search of the feature space repeatedly within
#' resampling iterations. First, the training data are split be whatever
#' resampling method was specified in the control function. For example, if
#' 10-fold cross-validation is selected, the entire genetic algorithm is
#' conducted 10 separate times. For the first fold, nine tenths of the data are
#' used in the search while the remaining tenth is used to estimate the
#' external performance since these data points were not used in the search.
#'
#' During the genetic algorithm, a measure of fitness is needed to guide the
#' search. This is the internal measure of performance. During the search, the
#' data that are available are the instances selected by the top-level
#' resampling (e.g. the nine tenths mentioned above). A common approach is to
#' conduct another resampling procedure. Another option is to use a holdout set
#' of samples to determine the internal estimate of performance (see the
#' holdout argument of the control function). While this is faster, it is more
#' likely to cause overfitting of the features and should only be used when a
#' large amount of training data are available. Yet another idea is to use a
#' penalized metric (such as the AIC statistic) but this may not exist for some
#' metrics (e.g. the area under the ROC curve).
#'
#' The internal estimates of performance will eventually overfit the subsets to
#' the data. However, since the external estimate is not used by the search, it
#' is able to make better assessments of overfitting. After resampling, this
#' function determines the optimal number of generations for the GA.
#'
#' Finally, the entire data set is used in the last execution of the genetic
#' algorithm search and the final model is built on the predictor subset that
#' is associated with the optimal number of generations determined by
#' resampling (although the update function can be used to manually set the
#' number of generations).
#'
#' This is an example of the output produced when \code{gafsControl(verbose =
#' TRUE)} is used:
#'
#' \preformatted{
#' Fold2 1 0.715 (13)
#' Fold2 2 0.715->0.737 (13->17, 30.4\%) *
#' Fold2 3 0.737->0.732 (17->14, 24.0\%)
#' Fold2 4 0.737->0.769 (17->23, 25.0\%) *
#' }
#'
#' For the second resample (e.g. fold 2), the best subset across all
#' individuals tested in the first generation contained 13 predictors and was
#' associated with a fitness value of 0.715. The second generation produced a
#' better subset containing 17 samples with an associated fitness values of
#' 0.737 (and improvement is symbolized by the \code{*}. The percentage listed
#' is the Jaccard similarity between the previous best individual (with 13
#' predictors) and the new best. The third generation did not produce a better
#' fitness value but the fourth generation did.
#'
#' The search algorithm can be parallelized in several places: \enumerate{
#' \item each externally resampled GA can be run independently (controlled by
#' the \code{allowParallel} option of \code{\link{gafsControl}}) \item within a
#' GA, the fitness calculations at a particular generation can be run in
#' parallel over the current set of individuals (see the \code{genParallel}
#' option in \code{\link{gafsControl}}) \item if inner resampling is used,
#' these can be run in parallel (controls depend on the function used. See, for
#' example, \code{\link[caret]{trainControl}}) \item any parallelization of the
#' individual model fits. This is also specific to the modeling function. }
#'
#' It is probably best to pick one of these areas for parallelization and the
#' first is likely to produces the largest decrease in run-time since it is the
#' least likely to incur multiple re-starting of the worker processes. Keep in
#' mind that if multiple levels of parallelization occur, this can effect the
#' number of workers and the amount of memory required exponentially.
#'
#' @inheritParams train
#' @aliases gafs.default gafs
#' @param x An object where samples are in rows and features are in columns.
#' This could be a simple matrix, data frame or other type (e.g. sparse
#' matrix). For the recipes method, \code{x} is a recipe object. See Details below
#' @param y a numeric or factor vector containing the outcome for each sample
#' @param iters number of search iterations
#' @param popSize number of subsets evaluated at each iteration
#' @param pcrossover the crossover probability
#' @param pmutation the mutation probability
#' @param elite the number of best subsets to survive at each generation
#' @param suggestions a binary matrix of subsets strings to be included in the
#' initial population. If provided the number of columns must match the number
#' of columns in \code{x}
#' @param differences a logical: should the difference in fitness values with
#' and without each predictor be calculated?
#' @param gafsControl a list of values that define how this function acts. See
#' \code{\link{gafsControl}} and URL.
#' @param ... additional arguments to be passed to other methods
#' @return an object of class \code{gafs}
#' @author Max Kuhn, Luca Scrucca (for GA internals)
#' @seealso \code{\link{gafsControl}}, \code{\link{predict.gafs}},
#' \code{\link{caretGA}}, \code{\link{rfGA}} \code{\link{treebagGA}}
#' @references Kuhn M and Johnson K (2013), Applied Predictive Modeling,
#' Springer, Chapter 19 \url{http://appliedpredictivemodeling.com}
#'
#' Scrucca L (2013). GA: A Package for Genetic Algorithms in R. Journal of
#' Statistical Software, 53(4), 1-37. \url{https://www.jstatsoft.org/article/view/v053i04}
#'
#' Mitchell M (1996), An Introduction to Genetic Algorithms, MIT Press.
#'
#' \url{https://en.wikipedia.org/wiki/Jaccard_index}
#' @keywords models
#' @method gafs default
#' @export
#' @examples
#'
#' \dontrun{
#' set.seed(1)
#' train_data <- twoClassSim(100, noiseVars = 10)
#' test_data <- twoClassSim(10, noiseVars = 10)
#'
#' ## A short example
#' ctrl <- gafsControl(functions = rfGA,
#' method = "cv",
#' number = 3)
#'
#' rf_search <- gafs(x = train_data[, -ncol(train_data)],
#' y = train_data$Class,
#' iters = 3,
#' gafsControl = ctrl)
#'
#' rf_search
#' }
#'
#' @export gafs.default
"gafs.default" <-
function(x, y,
iters = 10,
popSize = 50,
pcrossover = 0.8,
pmutation = 0.1,
elite = 0,
suggestions = NULL,
differences = TRUE,
gafsControl = gafsControl(),
...) {
startTime <- proc.time()
funcCall <- match.call(expand.dots = TRUE)
if(is.null(gafsControl$metric))
gafsControl$metric <- rep(ifelse(is.factor(y), "Accuracy", "RMSE"), 2)
if(is.null(gafsControl$maximize))
gafsControl$maximize <- rep(ifelse(gafsControl$metric %in% c("RMSE", "MAE", "logLoss"), FALSE, TRUE), 2)
if(is.null(names(gafsControl$metric)))
names(gafsControl$metric) <- c("internal", "external")
if(is.null(names(gafsControl$maximize)))
names(gafsControl$maximize) <- c("internal", "external")
if(nrow(x) != length(y)) stop("there should be the same number of samples in x and y")
numFeat <- ncol(x)
classLevels <- levels(y)
if(is.null(gafsControl$index))
gafsControl$index <- switch(
tolower(gafsControl$method),
cv = createFolds(y, gafsControl$number, returnTrain = TRUE),
repeatedcv = createMultiFolds(y, gafsControl$number, gafsControl$repeats),
loocv = createFolds(y, length(y), returnTrain = TRUE),
boot =, boot632 = createResample(y, gafsControl$number),
test = createDataPartition(y, 1, gafsControl$p),
lgocv = createDataPartition(y, gafsControl$number, gafsControl$p)
)
if(is.null(names(gafsControl$index)))
names(gafsControl$index) <- getFromNamespace("prettySeq", "caret")(gafsControl$index)
## Create hold-out indicies
if(is.null(gafsControl$indexOut)){
gafsControl$indexOut <-
lapply(gafsControl$index,
function(training, allSamples) allSamples[-unique(training)],
allSamples = seq(along.with = y)
)
names(gafsControl$indexOut) <-
getFromNamespace("prettySeq", "caret")(gafsControl$indexOut)
}
if(!is.null(gafsControl$seeds)) {
if(length(gafsControl$seeds) < length(gafsControl$index) + 1)
stop(paste("There must be at least",
length(gafsControl$index) + 1,
"random number seeds passed to gafsControl"))
} else {
gafsControl$seeds <- sample.int(100000, length(gafsControl$index) + 1)
}
## check summary function and metric
testOutput <- data.frame(pred = sample(y, min(10, length(y))),
obs = sample(y, min(10, length(y))))
if(is.factor(y))
for(i in seq(along.with = classLevels))
testOutput[, classLevels[i]] <- runif(nrow(testOutput))
test <- gafsControl$functions$fitness_extern(testOutput, lev = classLevels)
perfNames <- names(test)
if(is.null(perfNames)) {
warning(paste("The external fitness results should be a *named* vector;",
"new name(s) are",
paste(paste0("external", 1:length(test)), sep = "", collapse = ", ")),
immediate. = TRUE)
perfNames <- paste0("external", 1:length(test))
}
if(!(gafsControl$metric["external"] %in% perfNames)) {
warning(paste("The metric '", gafsControl$metric["external"],
"' is not created by the summary function; '",
perfNames[1], "' will be used instead", sep = ""))
gafsControl$metric["external"] <- perfNames[1]
}
`%op%` <- getOper(gafsControl$allowParallel && getDoParWorkers() > 1)
result <-
foreach(
i = seq(along.with = gafsControl$index),
.combine = "c", .verbose = FALSE,
.errorhandling = "stop") %op% {
ga_select(
x[gafsControl$index[[i]],,drop=FALSE],
y[gafsControl$index[[i]]],
funcs = gafsControl$functions,
ga_maximize = gafsControl$maximize,
ga_metric = gafsControl$metric,
iters = iters,
popSize = popSize,
pcrossover = pcrossover,
pmutation = pmutation,
elite = elite,
suggestions = suggestions,
ga_verbose = gafsControl$verbose,
testX = x[gafsControl$indexOut[[i]],,drop=FALSE],
testY = y[gafsControl$indexOut[[i]]],
ga_seed = gafsControl$seeds[i],
Resample = names(gafsControl$index)[i],
holdout = gafsControl$holdout,
lvl = classLevels,
genParallel = gafsControl$genParallel,
...
)
}
## TODO save only the parts you need inside of loop
external <- result[names(result) == "external"]
external <- do.call("rbind", external)
rownames(external) <- NULL
internal <- result[names(result) == "internal"]
internal <- do.call("rbind", internal)
rownames(internal) <- NULL
selected_vars <- result[names(result) == "final"]
names(selected_vars) <- names(gafsControl$index)
if(differences) {
diffs <- try(process_diffs(result[names(result) == "diffs"],
colnames(x)),
silent = TRUE)
if(class(diffs)[1] == "try-error") {
diffs <- NULL
# warning("An error occured when computing the variable differences")
}
} else diffs <- NULL
rm(result)
if(gafsControl$verbose) cat("+ final GA\n")
if(gafsControl$holdout > 0) {
in_holdout <- createDataPartition(y,
p = gafsControl$holdout,
list = FALSE)
in_model <- seq(along.with = y)[-unique(in_holdout)]
} else {
in_model <- seq(along.with = y)
in_holdout <- NULL
}
final_ga <- ga_select(
x[in_model,,drop=FALSE],
y[in_model],
funcs = gafsControl$functions,
ga_maximize = gafsControl$maximize,
ga_metric = gafsControl$metric,
iters = iters,
popSize = popSize,
pcrossover = pcrossover,
pmutation = pmutation,
elite = elite,
suggestions = suggestions,
ga_verbose = gafsControl$verbose,
testX = if(!is.null(in_holdout)) x[in_holdout,,drop=FALSE] else NULL,
testY = if(!is.null(in_holdout)) y[in_holdout] else NULL,
ga_seed = gafsControl$seeds[length(gafsControl$seeds)],
lvl = classLevels,
genParallel = gafsControl$genParallel,
...
)
averages <- ddply(external, .(Iter),
function(x, nms) {
apply(x[, perfNames, drop = FALSE], 2, mean)
},
nms = perfNames)
if(!is.null(gafsControl$functions$selectIter)) {
best_index <-
gafsControl$functions$selectIter(
averages,
metric = gafsControl$metric["external"],
maximize = gafsControl$maximize["external"]
)
best_iter <- averages$Iter[best_index]
best_vars <- colnames(x)[final_ga$subsets[[best_index]]]
} else {
best_index <- if(gafsControl$maximize["external"])
which.max(averages[,gafsControl$metric["external"]]) else
which.min(averages[,gafsControl$metric["external"]])
best_iter <- averages$Iter[best_index]
best_vars <- colnames(x)[final_ga$subsets[[best_index]]]
}
if(gafsControl$verbose) cat("+ final model\n")
fit <- gafsControl$functions$fit(x[, best_vars, drop=FALSE], y, lev = lvls, last = TRUE, ...)
endTime <- proc.time()
res <- list(fit = fit,
ga = final_ga,
ga_param = list(popSize = popSize,
pcrossover = pcrossover,
pmutation = pmutation,
elite = elite),
external = external,
internal = internal,
resampled_vars = selected_vars,
averages = averages,
iters = iters,
optVariables = best_vars,
optIter = best_iter,
control = gafsControl,
dims = dim(x),
differences = diffs,
perfNames = perfNames,
auto = TRUE,
the_dots = list(...),
call = funcCall,
times = list(everything = endTime - startTime),
levels = if(is.factor(y)) classLevels else NULL)
## now do analysis for whole dataset, plus make update method
class(res) <- "gafs"
res
}
###################################################################
##
#' Plot Method for the gafs and safs Classes
#'
#' Plot the performance values versus search iteration
#'
#' The mean (averaged over the resamples) is plotted against the search
#' iteration using a scatter plot.
#'
#' When \code{output = "data"}, the unaveraged data are returned with columns
#' for all the performance metrics and the resample indicator.
#'
#' @aliases plot.safs plot.gafs
#' @param x an object of class \code{\link{gafs}} or \code{\link{safs}}
#' @param metric the measure of performance to plot (e.g. RMSE, accuracy, etc)
#' @param estimate the type of estimate: either "internal" or "external"
#' @param output either "data", "ggplot" or "lattice"
#' @param data,mapping,environment kept for consistency with
#' \code{ggplot} and are not used here.
#' @param \dots For \code{plot} methods, these are options passed
#' to \code{\link[lattice]{xyplot}}. For \code{ggplot} methods,
#' they are not used.
#' @return Either a data frame, ggplot object or lattice object
#' @author Max Kuhn
#' @seealso \code{\link{gafs}}, \code{\link{safs}},
#' \code{\link[ggplot2]{ggplot}}, \code{\link[lattice]{xyplot}}
#' @keywords hplot
#' @method plot gafs
#' @export
#' @examples
#'
#' \dontrun{
#' set.seed(1)
#' train_data <- twoClassSim(100, noiseVars = 10)
#' test_data <- twoClassSim(10, noiseVars = 10)
#'
#' ## A short example
#' ctrl <- safsControl(functions = rfSA,
#' method = "cv",
#' number = 3)
#'
#' rf_search <- safs(x = train_data[, -ncol(train_data)],
#' y = train_data$Class,
#' iters = 50,
#' safsControl = ctrl)
#'
#' plot(rf_search)
#' plot(rf_search,
#' output = "lattice",
#' auto.key = list(columns = 2))
#'
#' plot_data <- plot(rf_search, output = "data")
#' summary(plot_data)
#' }
#'
#' @export plot.gafs
plot.gafs <- function(x,
metric = x$control$metric["external"],
estimate = c("internal", "external"),
output = "ggplot",
...) {
int_names <- names(x$internal)[!(names(x$internal) %in% ga_internal_names)]
ext_names <- names(x$external)[!(names(x$external) %in% ga_external_names)]
common <- intersect(int_names, ext_names)
both_estimates <- length(estimate) == 2 && all(sort(estimate) == c("external", "internal"))
if(both_estimates){
if(!metric %in% common) stop(paste("'", metric, "' not computed in both estimates"))
tmp_e <- x$external[, c("Iter", "Resample", common)]
tmp_e$Estimate <- "External"
tmp_i <- x$internal[, c("Iter", "Resample", common)]
tmp_i$Estimate <- "Internal"
plot_dat <- rbind(tmp_e, tmp_i)
} else {
if("internal" %in% estimate) {
if(!metric %in% int_names) stop(paste("'", metric, "' not computed internally"))
plot_dat <- x$internal[, c("Iter", "Resample", int_names)]
}
if("external" %in% estimate) {
if(!metric %in% int_names) stop(paste("'", metric, "' not computed externally"))
plot_dat <- x$external[, c("Iter", "Resample", ext_names)]
}
}
if(output == "data") out <- plot_dat
plot_dat <- if(both_estimates)
ddply(plot_dat, c("Iter", "Estimate"),
function(x) c(Mean = mean(x[, metric]))) else
ddply(plot_dat, c("Iter"),
function(x) c(Mean = mean(x[, metric])))
if(output == "ggplot") {
out <- if(both_estimates)
ggplot(plot_dat, aes(x = Iter, y = Mean, color = Estimate)) + geom_point() else
ggplot(plot_dat, aes(x = Iter, y = Mean)) + geom_point()
out <- out + xlab("Generation")
}
if(output == "lattice") {
out <- if(both_estimates)
xyplot(Mean ~ Iter, data = plot_dat, groups = Estimate, ...) else
xyplot(Mean ~ Iter, data = plot_dat, ...)
out <- update(out, xlab = "Generation")
}
out
}
#' @method ggplot gafs
#' @export ggplot.gafs
#' @export
#' @rdname plot.gafs
ggplot.gafs <-
function (data = NULL, mapping = NULL, ..., environment = NULL) {
plot.gafs(x = data, ...)
}
###################################################################
##
#' @importFrom stats predict
#' @export
caretGA <- list(fit = function(x, y, lev = NULL, last = FALSE, ...) train(x, y, ...),
pred = function(object, x) {
tmp <- predict(object, x)
if(object$control$classProbs) {
out <- cbind(data.frame(pred = tmp),
as.data.frame(predict(object, x, type = "prob"), stringsAsFactors = TRUE))
} else out <- tmp
out
},
fitness_intern = function(object, x, y, maximize, p){
perf_val <- getTrainPerf(object)
perf_val <- perf_val[names(perf_val) != "method"]
perf_val <- unlist(perf_val)
names(perf_val) <- gsub("Train", "", names(perf_val))
perf_val
},
fitness_extern = defaultSummary,
initial = gafs_initial,
selection = gafs_lrSelection,
crossover = gafs_spCrossover,
mutation = gafs_raMutation,
selectIter = best)
#' @importFrom stats predict
#' @export
treebagGA <- list(fit = function(x, y, lev = NULL, last = FALSE, ...) {
loadNamespace("ipred")
ipred::ipredbagg(y, x, ...)
},
pred = function(object, x) {
tmp <- predict(object, x)
if(is.factor(object$y)) {
out <- cbind(data.frame(pred = tmp),
as.data.frame(predict(object, x, type = "prob"), stringsAsFactors = TRUE))
} else out <- tmp
out
},
fitness_intern = function(object, x, y, maximize, p)
ipredStats(object)[1:2],
fitness_extern = defaultSummary,
initial = gafs_initial,
selection = gafs_lrSelection,
crossover = gafs_spCrossover,
mutation = gafs_raMutation,
selectIter = best)
#' @export
rfGA <- list(fit = function(x, y, lev = NULL, last = FALSE, ...) {
loadNamespace("randomForest")
randomForest::randomForest(x, y, ...)
},
pred = function(object, x) {
tmp <- predict(object, x)
if(is.factor(object$y)) {
out <- cbind(data.frame(pred = tmp),
as.data.frame(predict(object, x, type = "prob"), stringsAsFactors = TRUE))
} else out <- tmp
out
},
fitness_intern = function(object, x, y, maximize, p) rfStats(object),
fitness_extern = defaultSummary,
initial = gafs_initial,
selection = gafs_lrSelection,
crossover = gafs_spCrossover,
mutation = gafs_raMutation,
selectIter = best)
#' @method update gafs
#' @export
update.gafs <- function(object, iter, x, y, ...) {
iter <- iter[1]
if (iter > length(object$ga$subsets))
stop(paste("iter must be less than", length(object$ga$subsets)))
if (!is.null(object$recipe)) {
if (is.null(object$recipe$template))
stop("Recipe is missing data to be juiced.", call. = FALSE)
args <-
list(x = juice(object$recipe, all_predictors(), composition = "data.frame"),
y = juice(object$recipe, all_outcomes(), composition = "data.frame")[[1]],
lev = object$levels,
last = TRUE)
} else {
if (is.null(x) | is.null(y))
stop("the original training data is needed to refit the model")
args <- list(x = x[, object$ga$subsets[[iter]], drop=FALSE],
y = y, lev = object$levels, last = TRUE)
}
if (length(object$the_dots) > 0)
args <- c(args, object$the_dots)
if (object$control$verbose)
cat("Refitting model to use", length(object$ga$subsets[[iter]]),
"predictors from generation", iter, "\n")
object$fit <- do.call(object$control$functions$fit, args)
object$auto <- FALSE
object$optVariables <- colnames(args$x)[object$ga$subsets[[iter]]]
object$optIter <- iter
object
}
#' Variable importances for GAs and SAs
#'
#' Variable importance scores for \code{\link{safs}} and \code{\link{gafs}}
#' objects.
#'
#' A crude measure of importance is computed for thee two search procedures. At
#' the end of a search process, the difference in the fitness values is
#' computed for models with and without each feature (based on the search
#' history). If a predictor has at least two subsets that include and did not
#' include the predictor, a t-statistic is computed (otherwise a value of
#' \code{NA} is assigned to the predictor).
#'
#' This computation is done separately for each resample and the t-statistics
#' are averaged (\code{NA} values are ignored) and this average is reported as
#' the importance. If the fitness value should be minimized, the negative value
#' of the t-statistic is used in the average.
#'
#' As such, the importance score reflects the standardized increase in fitness
#' that occurs when the predict is included in the subset. Values near zero (or
#' negative) indicate that the predictor may not be important to the model.
#'
#' @aliases varImp.gafs varImp.safs
#' @param object an \code{\link{safs}} or \code{\link{gafs}} object
#' @param metric a metric to compute importance (see Details below)
#' @param maximize are larger values of the metric better?
#' @param \dots not currently uses
#' @return a data frame where the rownames are the predictor names and the
#' column is the average t-statistic
#' @author Max Kuhn
#' @seealso \code{\link{safs}}, \code{\link{gafs}}
#' @export
"varImp.gafs" <- function(object,
metric = object$control$metric["external"],
maximize = object$control$maximize["external"],
...) {
if(is.null(object$differences))
stop("must have used `differences = TRUE`")
out <- object$differences[,metric, drop = FALSE]
rownames(out) <- as.character(object$differences$Variable)
if(!maximize) out[, metric, drop = FALSE] <- -out[, metric, drop = FALSE]
out <- out[order(-out[, metric]),, drop = FALSE]
out
}
#' @rdname gafs.default
#' @method gafs recipe
#' @export
"gafs.recipe" <-
function(x, data,
iters = 10,
popSize = 50,
pcrossover = 0.8,
pmutation = 0.1,
elite = 0,
suggestions = NULL,
differences = TRUE,
gafsControl = gafsControl(),
...) {
startTime <- proc.time()
funcCall <- match.call(expand.dots = TRUE)
if(gafsControl$verbose)
cat("Preparing recipe\n")
orig_rec <- x
trained_rec <- prep(
x, training = data,
fresh = TRUE,
retain = TRUE,
verbose = FALSE,
stringsAsFactors = TRUE
)
x <- juice(trained_rec, all_predictors(), composition = "data.frame")
y <- juice(trained_rec, all_outcomes(), composition = "data.frame")
if(ncol(y) > 1)
stop("`safs` doesn't support multivariate outcomes", call. = FALSE)
y <- y[[1]]
is_weight <- summary(trained_rec)$role == "case weight"
if(any(is_weight))
stop("`safs` does not allow for weights.", call. = FALSE)
is_perf <- summary(trained_rec)$role == "performance var"
if(any(is_perf)) {
perf_data <- juice(trained_rec, has_role("performance var"))
} else perf_data <- NULL
if(is.null(gafsControl$metric))
gafsControl$metric <- rep(ifelse(is.factor(y), "Accuracy", "RMSE"), 2)
if(is.null(gafsControl$maximize))
gafsControl$maximize <- rep(ifelse(gafsControl$metric %in% c("RMSE", "MAE", "logLoss"), FALSE, TRUE), 2)
if(is.null(names(gafsControl$metric)))
names(gafsControl$metric) <- c("internal", "external")
if(is.null(names(gafsControl$maximize)))
names(gafsControl$maximize) <- c("internal", "external")
if(nrow(x) != length(y)) stop("there should be the same number of samples in x and y")
numFeat <- ncol(x)
classLevels <- levels(y)
if(is.null(gafsControl$index))
gafsControl$index <- switch(
tolower(gafsControl$method),
cv = createFolds(y, gafsControl$number, returnTrain = TRUE),
repeatedcv = createMultiFolds(y, gafsControl$number, gafsControl$repeats),
loocv = createFolds(y, length(y), returnTrain = TRUE),
boot =, boot632 = createResample(y, gafsControl$number),
test = createDataPartition(y, 1, gafsControl$p),
lgocv = createDataPartition(y, gafsControl$number, gafsControl$p)
)
if(is.null(names(gafsControl$index)))
names(gafsControl$index) <- getFromNamespace("prettySeq", "caret")(gafsControl$index)
## Create hold-out indicies
if(is.null(gafsControl$indexOut)){
gafsControl$indexOut <-
lapply(gafsControl$index,
function(training, allSamples) allSamples[-unique(training)],
allSamples = seq(along.with = y)
)
names(gafsControl$indexOut) <-
getFromNamespace("prettySeq", "caret")(gafsControl$indexOut)
}
if(!is.null(gafsControl$seeds)) {
if(length(gafsControl$seeds) < length(gafsControl$index) + 1)
stop(paste("There must be at least",
length(gafsControl$index) + 1,
"random number seeds passed to gafsControl"))
} else {
gafsControl$seeds <- sample.int(100000, length(gafsControl$index) + 1)
}
## check summary function and metric
testOutput <- data.frame(pred = sample(y, min(10, length(y))),
obs = sample(y, min(10, length(y))))
if(is.factor(y))
for(i in seq(along.with = classLevels))
testOutput[, classLevels[i]] <- runif(nrow(testOutput))
if(!is.null(perf_data))
testOutput <- cbind(
testOutput,
perf_data[sample(1:nrow(perf_data), nrow(testOutput)),, drop = FALSE]
)
test <- gafsControl$functions$fitness_extern(testOutput, lev = classLevels)
perfNames <- names(test)
if(is.null(perfNames)) {
warning(paste("The external fitness results should be a *named* vector;",
"new name(s) are",
paste(paste0("external", 1:length(test)), sep = "", collapse = ", ")),
immediate. = TRUE)
perfNames <- paste0("external", 1:length(test))
}
if(!(gafsControl$metric["external"] %in% perfNames)) {
warning(paste("The metric '", gafsControl$metric["external"],
"' is not created by the summary function; '",
perfNames[1], "' will be used instead", sep = ""))
gafsControl$metric["external"] <- perfNames[1]
}
`%op%` <- getOper(gafsControl$allowParallel && getDoParWorkers() > 1)
result <-
foreach(
i = seq(along.with = gafsControl$index),
.combine = "c", .verbose = FALSE,
.errorhandling = "stop") %op% {
ga_select(
x = x[gafsControl$index[[i]], , drop=FALSE],
y = y[gafsControl$index[[i]]],
perf = perf_data[gafsControl$index[[i]], , drop=FALSE],
funcs = gafsControl$functions,
ga_maximize = gafsControl$maximize,
ga_metric = gafsControl$metric,
iters = iters,
popSize = popSize,
pcrossover = pcrossover,
pmutation = pmutation,
elite = elite,
suggestions = suggestions,
ga_verbose = gafsControl$verbose,
testX = x[ gafsControl$indexOut[[i]], , drop=FALSE],
testY = y[ gafsControl$indexOut[[i]] ],
testPerf = perf_data[ gafsControl$indexOut[[i]], , drop=FALSE],
ga_seed = gafsControl$seeds[i],
Resample = names(gafsControl$index)[i],
holdout = gafsControl$holdout,
lvl = classLevels,
genParallel = gafsControl$genParallel,
...
)
}
## TODO save only the parts you need inside of loop
external <- result[names(result) == "external"]
external <- do.call("rbind", external)
rownames(external) <- NULL
internal <- result[names(result) == "internal"]
internal <- do.call("rbind", internal)
rownames(internal) <- NULL
selected_vars <- result[names(result) == "final"]
names(selected_vars) <- names(gafsControl$index)
if(differences) {
diffs <- try(process_diffs(result[names(result) == "diffs"],
colnames(x)),
silent = TRUE)
if (inherits(diffs, "try-error")) {
diffs <- NULL
# warning("An error occured when computing the variable differences")
}
} else diffs <- NULL
rm(result)
if(gafsControl$verbose) cat("+ final GA\n")
if(gafsControl$holdout > 0) {
in_holdout <- createDataPartition(y,
p = gafsControl$holdout,
list = FALSE)
in_model <- seq(along.with = y)[-unique(in_holdout)]
} else {
in_model <- seq(along.with = y)
in_holdout <- NULL
}
final_ga <- ga_select(
x = x[in_model, , drop=FALSE],
y = y[in_model],
perf = perf_data[in_model, , drop=FALSE],
funcs = gafsControl$functions,
ga_maximize = gafsControl$maximize,
ga_metric = gafsControl$metric,
iters = iters,
popSize = popSize,
pcrossover = pcrossover,
pmutation = pmutation,
elite = elite,
suggestions = suggestions,
ga_verbose = gafsControl$verbose,
testX = if(!is.null(in_holdout)) x[in_holdout,,drop=FALSE] else NULL,
testY = if(!is.null(in_holdout)) y[in_holdout] else NULL,
testPerf = if(!is.null(in_holdout)) perf_data[in_holdout,,drop=FALSE] else NULL,
ga_seed = gafsControl$seeds[length(gafsControl$seeds)],
lvl = classLevels,
genParallel = gafsControl$genParallel,
...
)
averages <- ddply(external, .(Iter),
function(x, nms) {
apply(x[, perfNames, drop = FALSE], 2, mean)
},
nms = perfNames)
if(!is.null(gafsControl$functions$selectIter)) {
best_index <-
gafsControl$functions$selectIter(
averages,
metric = gafsControl$metric["external"],
maximize = gafsControl$maximize["external"]
)
best_iter <- averages$Iter[best_index]
best_vars <- colnames(x)[final_ga$subsets[[best_index]]]
} else {
best_index <- if(gafsControl$maximize["external"])
which.max(averages[,gafsControl$metric["external"]]) else
which.min(averages[,gafsControl$metric["external"]])
best_iter <- averages$Iter[best_index]
best_vars <- colnames(x)[final_ga$subsets[[best_index]]]
}
if(gafsControl$verbose) cat("+ final model\n")
fit <- gafsControl$functions$fit(x[, best_vars, drop=FALSE], y, lev = lvls, last = TRUE, ...)
endTime <- proc.time()
# remove some items that won't be used again
final_ga$sa$fit <- NULL
final_ga$sa$final <- NULL
final_ga$sa$diffs <- NULL
res <- list(fit = fit,
ga = final_ga,
ga_param = list(popSize = popSize,
pcrossover = pcrossover,
pmutation = pmutation,
elite = elite),
external = external,
internal = internal,
resampled_vars = selected_vars,
averages = averages,
iters = iters,
optVariables = best_vars,
optIter = best_iter,
control = gafsControl,
dims = dim(x),
differences = diffs,
perfNames = perfNames,
auto = TRUE,
the_dots = list(...),
recipe = trained_rec,
call = funcCall,
times = list(everything = endTime - startTime),
levels = if(is.factor(y)) classLevels else NULL)
## now do analysis for whole dataset, plus make update method
class(res) <- "gafs"
res
}
|