1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
#' @rdname plot.train
#' @importFrom stats as.formula
#' @export
ggplot.train <- function(data = NULL, mapping = NULL, metric = data$metric[1], plotType = "scatter", output = "layered",
nameInStrip = FALSE, highlight = FALSE, ..., environment = NULL) {
if(!(output %in% c("data", "layered", "ggplot"))) stop("'outout' should be either 'data', 'ggplot' or 'layered'")
params <- data$modelInfo$parameters$parameter
paramData <- data$modelInfo$parameters
if(grepl("adapt", data$control$method))
warning("When using adaptive resampling, this plot may not accurately capture the relationship between the tuning parameters and model performance.")
plotIt <- "yes"
if(all(params == "parameter"))
{
plotIt <- "There are no tuning parameters for this model."
} else {
dat <- data$results
## Some exceptions for pretty printing
if(data$method == "nb") dat$usekernel <- factor(ifelse(dat$usekernel, "Nonparametric", "Gaussian"))
if(data$method == "gam") dat$select <- factor(ifelse(dat$select, "Feature Selection", "No Feature Selection"))
if(data$method == "qrnn") dat$bag <- factor(ifelse(dat$bag, "Bagging", "No Bagging"))
if(data$method == "C5.0") dat$winnow <- factor(ifelse(dat$winnow, "Winnowing", "No Winnowing"))
if(data$method == "M5") dat$rules <- factor(ifelse(dat$rules == "Yes", "Rules", "Trees"))
## Check to see which tuning parameters were varied
# params is a factor, so just using params does not work properly when model metric is not the first column in dat
# e.g. oob resampling
paramValues <- apply(dat[,as.character(params),drop = FALSE],
2,
function(x) length(unique(x)))
if(any(paramValues > 1))
{
params <- names(paramValues)[paramValues > 1]
paramData <- subset(paramData, parameter %in% params)
} else plotIt <- "There are no tuning parameters with more than 1 value."
}
if(plotIt == "yes")
{
p <- length(params)
dat <- dat[, c(metric, params)]
resampText <- resampName(data, FALSE)
resampText <- paste(metric, resampText)
} else stop(plotIt)
p <- ncol(dat) - 1
if(p > 1) {
numUnique <- unlist(lapply(dat[, -1], function(x) length(unique(x))))
numUnique <- sort(numUnique, decreasing = TRUE)
dat <- dat[, c(metric, names(numUnique))]
}
if(output == "data") return(dat)
if(data$control$search == "random") return(random_search_plot(data, metric = metric))
if(plotType == "scatter") {
# To highlight bestTune parameters in the plot
if (highlight) {
bstRes <- data$results
for (par in as.character(params))
bstRes <- bstRes[which(bstRes[, par] == data$bestTune[, par]), ]
if (nrow(bstRes) > 1)
stop("problem in extracting model$bestTune row from model$results")
}
dnm <- names(dat)
if(p > 1 && is.numeric(dat[, 3])) dat[, 3] <- factor(format(dat[, 3]))
if(p > 2 & nameInStrip) {
strip_vars <- names(dat)[-(1:3)]
strip_lab <- as.character(subset(data$modelInfo$parameters, parameter %in% strip_vars)$label)
for(i in seq_along(strip_vars))
dat[, strip_vars[i]] <- factor(paste(strip_lab[i], dat[, strip_vars[i]], sep = ": "))
}
# If a parameter is assigned to a facet panel, it needs to be converted to a factor
# otherwise, highlighting the bestTune parameters in a facet creates an extraneous panel
# potentially, a bug in ggplot ?
if (p >= 3)
for (col in 1:(p-2)) {
lvls <- as.character(unique(dat[, dnm[col+3]]))
dat[, dnm[col+3]] <- factor(dat[, dnm[col+3]], levels = lvls)
if (highlight)
bstRes[, dnm[col+3]] <- factor(bstRes[, dnm[col+3]], levels = lvls)
}
out <- ggplot(dat, aes_string(x = dnm[2], y = dnm[1]))
out <- out + ylab(resampText)
# names(dat)[.] changed to dnm[.] to make the code more readable & (marginally) efficient
out <- out + xlab(paramData$label[paramData$parameter == dnm[2]])
if (highlight)
out <- out + geom_point(data = bstRes,
aes_string(x = dnm[2], y = dnm[1]),
size = 4, shape = 5)
if(output == "layered") {
if(p >= 2) {
leg_name <- paramData$label[paramData$parameter == dnm[3]]
out <- out + geom_point(aes_string(color = dnm[3], shape = dnm[3]))
out <- out + geom_line(aes_string(color = dnm[3]))
out <- out + scale_colour_discrete(name = leg_name) +
scale_shape_discrete(name = leg_name)
} else out <- out + geom_point() + geom_line()
if(p == 3)
out <- out + facet_wrap(as.formula(paste("~", dnm[4])))
if(p == 4)
out <- out + facet_grid(as.formula(paste(names(dat)[4], "~", names(dat)[5])))
if(p > 4) stop("The function can only handle <= 4 tuning parameters for scatter plots. Use output = 'ggplot' to create your own")
}
}
if(plotType == "level") {
if(p == 1) stop("Two tuning parameters are required for a level plot")
dnm <- names(dat)
if(is.numeric(dat[,2])) dat[,2] <- factor(format(dat[,2]), levels = format(sort(unique(dat[,2]))))
if(is.numeric(dat[,3])) dat[,3] <- factor(format(dat[,3]), levels = format(sort(unique(dat[,3]))))
if(p > 2 & nameInStrip) {
strip_vars <- names(dat)[-(1:3)]
strip_lab <- as.character(subset(data$modelInfo$parameters, parameter %in% strip_vars)$label)
for(i in seq_along(strip_vars))
dat[, strip_vars[i]] <- factor(
paste(strip_lab[i], format(dat[, strip_vars[i]]), sep = ": "),
levels = paste(strip_lab[i], format(sort(unique(dat[, strip_vars[i]]))), sep = ": ")
)
}
## TODO: use factor(format(x)) to make a solid block of colors?
out <- ggplot(dat, aes_string(x = dnm[2], y = dnm[3], fill = metric))
out <- out + ylab(paramData$label[paramData$parameter == dnm[3]])
out <- out + xlab(paramData$label[paramData$parameter == dnm[2]])
if(output == "layered") {
out <- out + geom_tile()
if(p == 3)
out <- out + facet_wrap(as.formula(paste("~", dnm[4])))
# incorrect facet_wrap call for p == 4 ? fixed errors for p >= 4
if(p == 4)
out <- out + facet_grid(as.formula(paste(dnm[4], "~", dnm[5])))
if(p > 4) stop("The function can only handle <= 4 tuning parameters for level plots. Use output = 'ggplot' to create your own")
}
}
out
}
#' @rdname plot.rfe
#' @export
ggplot.rfe <- function(data = NULL, mapping = NULL, metric = data$metric[1],
output = "layered", ..., environment = NULL) {
if(!(output %in% c("data", "layered", "ggplot")))
stop("'outout' should be either 'data', 'ggplot' or 'layered'")
resampText <- resampName(data, FALSE)
resampText <- paste(metric, resampText)
if(output == "data") return(data$results)
if(any(names(data$results) == "Num_Resamples")) {
data$results <-
subset(data$results, Num_Resamples >= floor(.5 * length(data$control$index)))
}
notBest <- subset(data$results, Variables != data$bestSubset)
best <- subset(data$results, Variables == data$bestSubset)
out <- ggplot(data$results, aes_string(x = "Variables", y = metric))
if(output == "ggplot") return(out)
out <- out + geom_line()
out <- out + ylab(resampText)
out <- out + geom_point(data = notBest, aes_string(x = "Variables", y = metric))
out <- out + geom_point(data=best, aes_string(x = "Variables", y = metric),
size = 3, colour="blue")
out
}
#' @importFrom stats complete.cases
random_search_plot <- function(x, metric = x$metric[1]) {
params <- x$modelInfo$parameters
p_names <- as.character(params$parameter)
exclude <- NULL
for(i in seq(along.with = p_names)) {
if(all(is.na(x$results[, p_names[i]])))
exclude <- c(exclude, i)
}
if(length(exclude) > 0) p_names <- p_names[-exclude]
x$results <- x$results[, c(metric, p_names)]
res <- x$results[complete.cases(x$results),]
combos <- res[, p_names, drop = FALSE]
nvals <- unlist(lapply(combos, function(x) length(unique(x))))
p_names <- p_names[which(nvals > 1)]
if(nrow(combos) == 1 | length(p_names) == 0)
stop("Can't plot results with a single tuning parameter combination")
combos <- combos[, p_names, drop = FALSE]
nvals <- sort(nvals[p_names], decreasing = TRUE)
is_num <- unlist(lapply(combos, function(x) is.numeric(x) | is.integer(x)))
num_cols <- names(is_num)[is_num]
other_cols <- names(is_num)[!is_num]
num_num <- sum(is_num)
num_other <- length(p_names) - num_num
if(num_other == 0) {
if(num_num == 1) {
out <- ggplot(res, aes_string(x = num_cols[1], y = metric)) +
geom_point() + xlab(as.character(params$label[params$parameter == num_cols[1]]))
} else {
if(num_num == 2) {
out <- ggplot(res, aes_string(x = num_cols[1], y = num_cols[2], size = metric)) +
geom_point() +
xlab(as.character(params$label[params$parameter == num_cols[1]])) +
ylab(as.character(params$label[params$parameter == num_cols[2]]))
} else {
## feature plot
vert <- melt(res[, c(metric, num_cols)], id.vars = metric, variable.name = "parameter")
vert <- merge(vert, params)
names(vert)[names(vert) == "label"] <- "Parameter"
out <- ggplot(vert, aes_string(x = "value", y = metric)) +
geom_point() + facet_wrap(~Parameter, scales = "free_x") + xlab("")
}
}
} else {
if(num_other == length(p_names)) {
## do an interaction plot
if(num_other == 1) {
out <- ggplot(res, aes_string(x = other_cols[1], y = metric)) +
geom_point() +
xlab(as.character(params$label[params$parameter == other_cols[1]]))
} else {
if(num_other == 2) {
out <- ggplot(res, aes_string(x = other_cols[1], shape = other_cols[2], y = metric)) +
geom_point() + geom_line(aes_string(group = other_cols[2])) +
xlab(as.character(params$label[params$parameter == other_cols[1]]))
} else {
if(num_other == 3) {
pname <- as.character(params$label[params$parameter == other_cols[3]])
res[,other_cols[3]] <- paste0(pname, ": ", res[,other_cols[3]])
out <- ggplot(res, aes_string(x = other_cols[1], shape = other_cols[2], y = metric)) +
geom_point() + geom_line(aes_string(group = other_cols[2])) +
facet_grid(paste0(".~", other_cols[3])) +
xlab(as.character(params$label[params$parameter == other_cols[1]]))
} else {
stop(paste("There are",
num_other, "non-numeric variables; I don't have code for",
"that Dave"))
}
}
}
} else {
## feature plot with colors and or shapes
vert <- melt(res[, c(metric, num_cols, other_cols)],
id.vars = c(metric, other_cols),
variable.name = "parameter")
vert <- merge(vert, params)
names(vert)[names(vert) == "label"] <- "Parameter"
if(num_other == 1) {
out <- ggplot(vert, aes_string(x = "value", y = metric, color = other_cols)) +
geom_point() + facet_wrap(~Parameter, scales = "free_x") + xlab("")
} else {
stop(paste("There are", num_num, "numeric tuning variables and",
num_other, "non-numeric variables; I don't have code for",
"that Dave"))
}
}
}
out
}
|