1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
###################################################################
##
## Todo:
## X. Make an argument for what to save ("prediction", "probabilities", "both")
## X. Adapt code to average predictions/probabilities
## 1. Use train/rfe/sbf saved prediction function to make predictions
## for the ensemble.
## X. Change `nrow` to an average of `complete.cases`
## X. Detect class prob column names and drop off the last one
## X. Breakout the 'n' code so that it isn't converted to character
## X. Call it "oob" or "oob_pred"
## 2. Make `oob_pred.list` smaller and create a new function to
## do the real work
## 3. TEST TEST TEST
###################################################################
##
oob_pred <- function (x, ...) UseMethod("oob_pred")
#' @export
oob_pred.train <- function(x, best = TRUE, average = TRUE, ...) {
if(is.null(x$pred))
stop("re-fit the model using 'trainControl(savePredictions=TRUE)'")
prd <- x$pred
pname <- as.character(x$modelInfo$parameters$parameter)
if(best) {
prd <- merge(prd, x$bestTune)
prd <- prd[, !(colnames(prd) %in% pname)]
}
bycol <- "rowIndex"
if(!best) bycol <- c(bycol, pname)
if(average) prd <- get_averages(x, prd, bycol)
if(x$modelType == "Classification") {
lev <- train_lev(x)
if(!is.null(lev)) {
if(is.character(prd$obs)) prd$obs <- factor(prd$obs, levels = lev)
if(is.character(prd$pred)) prd$pred <- factor(prd$pred, levels = lev)
}
}
prd
}
#' @export
oob_pred.rfe <- function(x, best = TRUE, average = TRUE, ...) {
if(is.null(x$pred))
stop("re-fit the model using 'rfeControl(saveDetails=TRUE)'")
prd <- x$pred
if(best) {
prd <- subset(prd, Variables == x$bestSubset)
prd <- prd[, colnames(prd) != "Variables"]
bycol <- "rowIndex"
} else bycol <- c("rowIndex", "Variables")
## Temp kludge since I think there is an issue with
## how `rfe` saves the data
prd <- prd[!duplicated(prd),]
if(average) prd <- get_averages(x, prd, bycol)
if(is.character(prd$obs) && !is.null(x$obsLevels))
prd$obs <- factor(prd$obs, levels = x$obsLevels)
if(is.character(prd$pred) && !is.null(x$obsLevels))
prd$pred <- factor(prd$pred, levels = x$obsLevels)
prd
}
#' @export
oob_pred.sbf <- function(x, average = TRUE, ...) {
if(is.null(x$pred))
stop("re-fit the model using 'rfeControl(saveDetails=TRUE)'")
prd <- x$pred[names(x$pred) == "predictions"]
prd <- rbind.fill(prd)
prd <- prd[!duplicated(prd),]
if(average) prd <- get_averages(x, prd, bycol = "rowIndex")
if(is.character(prd$obs) && !is.null(x$obsLevels))
prd$obs <- factor(prd$obs, levels = x$obsLevels)
if(is.character(prd$pred) && !is.null(x$obsLevels))
prd$pred <- factor(prd$pred, levels = x$obsLevels)
prd
}
#' @importFrom stats reshape
#' @export
oob_pred.list <- function(x, direction = "wide", what = "both", ...) {
num <- length(x)
oob <- lapply(x, oob_pred, ...)
## check column names and get those common to everything
cnames <- lapply(oob, colnames)
cnames <- table(unlist(cnames))
if(any(cnames < num)) {
cnames <- names(cnames[cnames == num])
for(i in 1:num) oob[[i]] <- oob[[i]][, cnames]
}
nms <- names(oob)
if(is.null(nms)) nms <- well_numbered("Model", length(oob))
for(i in seq(along.with = nms)) oob[[i]]$.label <- nms[i]
oob <- rbind.fill(oob)
if(length(table(table(oob$n))) > 1)
stop("Some averages have different sample sizes than others")
if(direction == "wide") {
vert_names <- colnames(oob)
vert_names <- vert_names[!(vert_names %in% c("rowIndex", "n", "obs", ".label"))]
oob <- reshape(oob, direction = "wide",
v.names = vert_names,
idvar = c("rowIndex", "obs", "n"),
timevar = ".label")
vert_names <- vert_names[vert_names != "pred"]
exclude <- vert_names[length(vert_names)]
oob <- oob[, !grepl(paste0("^", exclude, "\\."), names(oob))]
if(!is.null(what) && !("both" %in% what)) {
if(!is.null(what) && !("pred" %in% what))
oob <- oob[, !grepl("^pred\\.", names(oob))]
if(!is.null(what) && !("prob" %in% what)) {
for(i in vert_names)
oob <- oob[, !grepl(paste0("^", i, "\\."), names(oob))]
}
}
}
oob
}
###################################################################
##
get_averages <- function (x, ...) UseMethod("get_averages")
#' @importFrom stats complete.cases
get_averages.train <- function(x, prd, bycol = "rowIndex", ...) {
if("Regression" %in% x$modelType) {
out <- ddply(prd, bycol,
function(x) c(colMeans(x[, c("pred", "obs")])))
} else {
out <- ddply(prd, bycol,
function(x) c(pred = char_mode(x$pred),
obs = as.character(x$obs)[1]))
if(x$control$classProbs) {
lev <- train_lev(x)
cprobs <- ddply(prd, bycol,
function(x, lev) c(colMeans(x[, lev])),
lev = lev)
out <- merge(out, cprobs)
}
}
n <- ddply(prd, bycol, function(x) c(n = sum(complete.cases(x))))
out <- merge(out, n)
out
}
#' @importFrom stats complete.cases
get_averages.rfe <- function(x, prd, bycol = "rowIndex", ...) {
if(is.null(x$obsLevels)) {
out <- ddply(prd, bycol,
function(x) c(colMeans(x[, c("pred", "obs")])))
} else {
out <- ddply(prd, bycol,
function(x) c(pred = char_mode(x$pred),
obs = as.character(x$obs)[1]))
if(all(x$obsLevels %in% colnames(prd))) {
lev <- x$obsLevels
cprobs <- ddply(prd, bycol,
function(x, lev) c(colMeans(x[, lev])),
lev = lev)
out <- merge(out, cprobs)
}
}
n <- ddply(prd, bycol, function(x) c(n = sum(complete.cases(x))))
out <- merge(out, n)
out
}
#' @importFrom stats complete.cases
get_averages.sbf <- function(x, prd, bycol = "rowIndex", ...) {
if(is.null(x$obsLevels)) {
out <- ddply(prd, bycol,
function(x) c(colMeans(x[, c("pred", "obs")])))
} else {
out <- ddply(prd, bycol,
function(x) c(pred = char_mode(x$pred),
obs = as.character(x$obs)[1]))
if(all(x$obsLevels %in% colnames(prd))) {
lev <- x$obsLevels
cprobs <- ddply(prd, bycol,
function(x, lev) c(colMeans(x[, lev])),
lev = lev)
out <- merge(out, cprobs)
}
}
n <- ddply(prd, bycol, function(x) c(n = sum(complete.cases(x))))
out <- merge(out, n)
out
}
###################################################################
##
#' @importFrom stats complete.cases
char_mode <- function(x, random = TRUE, na.rm = FALSE) {
if(na.rm) x <- x[complete.cases(x)]
tab <- table(x)
tab <- tab[tab == max(tab)]
tab <- if(length(tab) > 1 & random) sample(tab, 1) else tab[1]
as.vector(names(tab))
}
train_lev <- function(x) {
if(x$modelType == "Classification") {
if(!is.null(x$modelInfo$levels)) {
lev <- x$modelInfo$levels(x$finalModel)
} else {
lev <- if(!isS4(x)) x$finalModel$obsLevel else unique(x$pred$obs)
}
} else lev <- NULL
lev
}
#' @importFrom stats cor
corr_mat <- function (object, metric = object$metrics,
...) {
dat <- object$values[, grepl(paste0("~", metric[1]),
colnames(object$values))]
colnames(dat) <- gsub(paste0("~", metric[1]), "", colnames(dat))
dat <- cor(dat, ...)
dat
}
|