1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
#' k-Nearest Neighbour Classification
#'
#' $k$-nearest neighbour classification that can return class votes for all
#' classes.
#'
#' \code{knn3} is essentially the same code as \code{\link[ipred]{ipredknn}}
#' and \code{knn3Train} is a copy of \code{\link[class]{knn}}. The underlying C
#' code from the \code{class} package has been modified to return the vote
#' percentages for each class (previously the percentage for the winning class
#' was returned).
#'
#' @aliases knn3 knn3.formula knn3.matrix knn3.data.frame knn3Train
#' @param formula a formula of the form \code{lhs ~ rhs} where \code{lhs} is
#' the response variable and \code{rhs} a set of predictors.
#' @param data optional data frame containing the variables in the model
#' formula.
#' @param subset optional vector specifying a subset of observations to be
#' used.
#' @param na.action function which indicates what should happen when the data
#' contain \code{NA}s.
#' @param k number of neighbours considered.
#' @param x a matrix of training set predictors
#' @param y a factor vector of training set classes
#' @param ... additional parameters to pass to \code{knn3Train}. However,
#' passing \code{prob = FALSE} will be over-ridden.
#' @param train matrix or data frame of training set cases.
#' @param test matrix or data frame of test set cases. A vector will be
#' interpreted as a row vector for a single case.
#' @param cl factor of true classifications of training set
#' @param l minimum vote for definite decision, otherwise \code{doubt}. (More
#' precisely, less than \code{k-l} dissenting votes are allowed, even if
#' \code{k} is increased by ties.)
#' @param prob If this is true, the proportion of the votes for each class are
#' returned as attribute \code{prob}.
#' @param use.all controls handling of ties. If true, all distances equal to
#' the \code{k}th largest are included. If false, a random selection of
#' distances equal to the \code{k}th is chosen to use exactly \code{k}
#' neighbours.
#' @return An object of class \code{knn3}. See \code{\link{predict.knn3}}.
#' @author \code{\link[class]{knn}} by W. N. Venables and B. D. Ripley and
#' \code{\link[ipred]{ipredknn}} by Torsten.Hothorn
#' <Torsten.Hothorn@@rzmail.uni-erlangen.de>, modifications by Max Kuhn and
#' Andre Williams
#' @keywords multivariate
#' @examples
#'
#' irisFit1 <- knn3(Species ~ ., iris)
#'
#' irisFit2 <- knn3(as.matrix(iris[, -5]), iris[,5])
#'
#' data(iris3)
#' train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
#' test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])
#' cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
#' knn3Train(train, test, cl, k = 5, prob = TRUE)
#'
#' @export
"knn3" <- function(x, ...) UseMethod("knn3")
#' @export
knn3.default <- function(x, ...)
{
if(!inherits(x, "formula")) stop("knn3 only implemented for formula objects")
}
#' @rdname knn3
#' @method knn3 formula
#' @importFrom stats model.matrix terms model.extract
#' @export
knn3.formula <- function (formula, data, subset, na.action, k = 5, ...)
{
if (missing(formula) ||
(length(formula) != 3) ||
(length(attr(terms(formula[-2], data = data), "term.labels")) < 1) ||
(length(attr(terms(formula[-3], data = data), "term.labels")) != 1))
stop("formula missing or incorrect")
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval(m$data, parent.frame())))
m$data <- as.data.frame(data, stringsAsFactors = TRUE)
m[[1]] <- as.name("model.frame")
m$... <- NULL
m$k <- NULL
m <- eval(m, parent.frame())
Terms <- attr(m, "terms")
y <- model.extract(m, "response")
x <- model.matrix(Terms, m)
xvars <- as.character(attr(Terms, "variables"))[-1]
if ((yvar <- attr(Terms, "response")) > 0)
xvars <- xvars[-yvar]
xlev <- if (length(xvars) > 0) {
xlev <- lapply(m[xvars], levels)
xlev[!sapply(xlev, is.null)]
}
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0)
x <- x[, -xint, drop = FALSE]
RET <- list(learn = list(y = y, X = x))
RET$k <- k
RET$terms <- Terms
RET$contrasts <- attr(x, "contrasts")
RET$xlevels <- xlev
RET$theDots <- list(...)
attr(RET, "na.message") <- attr(m, "na.message")
if (!is.null(attr(m, "na.action")))
RET$na.action <- attr(m, "na.action")
class(RET) <- "knn3"
RET
}
#' @rdname knn3
#' @method knn3 data.frame
#' @export
knn3.data.frame <- function(x, y, k = 5, ...)
{
x <- as.matrix(x)
out <- knn3(x, y = y, k = k, ...)
out
}
#' @rdname knn3
#' @method knn3 matrix
#' @export
knn3.matrix <- function(x, y, k = 5, ...)
{
if(!is.matrix(x)) x <- as.matrix(x)
if(!is.factor(y)) stop("y must be a factor")
RET <- list(learn = list(y = y, X = x))
RET$k <- k
RET$terms <- NULL
RET$contrasts <- NULL
RET$xlevels <- NULL
RET$theDots <- list(...)
class(RET) <- "knn3"
RET
}
#' @rdname knn3
#' @method print knn3
#' @export
print.knn3 <- function (x, ...)
{
cat(x$k, "-nearest neighbor model\n", sep = "")
cat("Training set outcome distribution:\n")
if(is.factor(x$learn$y)) {
print(table(x$learn$y))
} else print(summary(x$learn$y))
cat("\n")
invisible(x)
}
#' Predictions from k-Nearest Neighbors
#'
#' Predict the class of a new observation based on k-NN.
#'
#' This function is a method for the generic function \code{\link{predict}} for
#' class \code{knn3}. For the details see \code{\link{knn3}}. This is
#' essentially a copy of \code{\link[ipred]{predict.ipredknn}}.
#'
#' @param object object of class \code{knn3}.
#' @param newdata a data frame of new observations.
#' @param type return either the predicted class or the proportion of the votes
#' for the winning class.
#' @param ... additional arguments.
#' @return Either the predicted class or the proportion of the votes for each
#' class.
#' @author \code{\link[ipred]{predict.ipredknn}} by Torsten.Hothorn
#' <Torsten.Hothorn@@rzmail.uni-erlangen.de>
#' @keywords multivariate
#' @method predict knn3
#' @export
predict.knn3 <- function (object, newdata, type = c("prob", "class"), ...)
{
type <- match.arg(type)
if (!inherits(object, "knn3"))
stop("object not of class knn3")
if (!is.null(Terms <- object$terms)) {
if (missing(newdata))
newdata <- model.frame(object)
else {
newdata <- model.frame(as.formula(delete.response(Terms)),
newdata, na.action = function(x) x, xlev = object$xlevels)
}
x <- model.matrix(delete.response(Terms), newdata, contrasts = object$contrasts)
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0)
x <- x[, -xint, drop = FALSE]
}
else {
x <- as.matrix(newdata)
}
argList <- list(
train = object$learn$X,
test = x,
cl = object$learn$y,
k = object$k)
if(length(object$theDots) == 0) object$theDots <- list(prob = TRUE)
if(any(names(object$theDots) == "prob")) object$theDots$prob <- TRUE
argList <- c(argList, object$theDots)
RET <- do.call(
"knn3Train",
argList)
if (type == "prob")
{
return(attr(RET, "prob"))
} else {
RET <- factor(RET, levels = levels(object$learn$y))
return(RET)
}
}
#' @rdname knn3
#' @export
knn3Train <- function(train, test, cl, k=1, l=0, prob = TRUE, use.all=TRUE)
{
train <- as.matrix(train)
if(is.null(dim(test))) dim(test) <- c(1, length(test))
test <- as.matrix(test)
if(any(is.na(train)) || any(is.na(test)) || any(is.na(cl)))
stop("no missing values are allowed")
p <- ncol(train)
ntr <- nrow(train)
if(length(cl) != ntr) stop("'train' and 'class' have different lengths")
if(ntr < k) {
warning(gettextf("k = %d exceeds number %d of patterns", k, ntr),
domain = NA)
k <- ntr
}
if (k < 1)
stop(gettextf("k = %d must be at least 1", k), domain = NA)
nte <- nrow(test)
if(ncol(test) != p) stop("dims of 'test' and 'train differ")
clf <- as.factor(cl)
nc <- max(unclass(clf))
Z <- .C("knn3",
as.integer(k),
as.integer(l),
as.integer(ntr),
as.integer(nte),
as.integer(p),
as.double(train),
as.integer(unclass(clf)),
as.double(test),
integer(nc+1),
as.integer(nc),
as.integer(FALSE),
as.integer(use.all),
all_vote=double(as.integer(nte*nc))
)
classProbs <- matrix(Z$all_vote,nrow=nte,ncol=nc,byrow=TRUE)
colnames(classProbs)<-sort(unique(clf))
bestClass <- function(x)
{
out <- which(x == max(x))
if(length(out) > 1) out <- sample(out, 1)
out
}
res <- colnames(classProbs)[apply(classProbs, 1, bestClass)]
votes <- apply(classProbs * k, 1, max)
inDoubt <- (votes < l)
if(any(inDoubt)) res[inDoubt] <- NA
if (prob) attr(res, "prob") <- classProbs
res
}
|