1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
#' k-Nearest Neighbour Regression
#'
#' $k$-nearest neighbour regression that can return the average value for the
#' neighbours.
#'
#' \code{knnreg} is similar to \code{\link[ipred]{ipredknn}} and
#' \code{knnregTrain} is a modification of \code{\link[class]{knn}}. The
#' underlying C code from the \code{class} package has been modified to return
#' average outcome.
#'
#' @aliases knnreg knnregTrain knnreg.formula knnreg.default knnreg.matrix
#' knnreg.data.frame knnreg
#' @param formula a formula of the form \code{lhs ~ rhs} where \code{lhs} is
#' the response variable and \code{rhs} a set of predictors.
#' @param data optional data frame containing the variables in the model
#' formula.
#' @param subset optional vector specifying a subset of observations to be
#' used.
#' @param na.action function which indicates what should happen when the data
#' contain \code{NA}s.
#' @param k number of neighbours considered.
#' @param x a matrix or data frame of training set predictors.
#' @param y a numeric vector of outcomes.
#' @param ... additional parameters to pass to \code{knnregTrain}.
#' @param train matrix or data frame of training set cases.
#' @param test matrix or data frame of test set cases. A vector will be
#' interpreted as a row vector for a single case.
#' @param use.all controls handling of ties. If true, all distances equal to
#' the \code{k}th largest are included. If false, a random selection of
#' distances equal to the \code{k}th is chosen to use exactly \code{k}
#' neighbours.
#' @return An object of class \code{knnreg}. See \code{\link{predict.knnreg}}.
#' @author \code{\link[class]{knn}} by W. N. Venables and B. D. Ripley and
#' \code{\link[ipred]{ipredknn}} by Torsten.Hothorn
#' <Torsten.Hothorn@@rzmail.uni-erlangen.de>, modifications by Max Kuhn and
#' Chris Keefer
#' @keywords multivariate
#' @examples
#'
#' data(BloodBrain)
#'
#' inTrain <- createDataPartition(logBBB, p = .8)[[1]]
#'
#' trainX <- bbbDescr[inTrain,]
#' trainY <- logBBB[inTrain]
#'
#' testX <- bbbDescr[-inTrain,]
#' testY <- logBBB[-inTrain]
#'
#' fit <- knnreg(trainX, trainY, k = 3)
#'
#' plot(testY, predict(fit, testX))
#'
#' @export knnreg
"knnreg" <- function(x, ...) UseMethod("knnreg")
#' @rdname knnreg
#' @method knnreg default
#' @export
knnreg.default <- function(x, ...)
{
if(!any(class(x) %in% "formula")) stop("knnreg only implemented for formula objects")
}
#' @rdname knnreg
#' @method knnreg formula
#' @importFrom stats model.matrix terms model.extract
#' @export
knnreg.formula <- function (formula, data, subset, na.action, k = 5, ...)
{
if (missing(formula) ||
(length(formula) != 3) ||
(length(attr(terms(formula[-2], data = data), "term.labels")) < 1) ||
(length(attr(terms(formula[-3], data = data), "term.labels")) != 1))
stop("formula missing or incorrect")
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval(m$data, parent.frame())))
m$data <- as.data.frame(data, stringsAsFactors = FALSE)
m[[1]] <- as.name("model.frame")
m$... <- NULL
m$k <- NULL
m <- eval(m, parent.frame())
Terms <- attr(m, "terms")
y <- model.extract(m, "response")
x <- model.matrix(Terms, m)
xvars <- as.character(attr(Terms, "variables"))[-1]
if ((yvar <- attr(Terms, "response")) > 0)
xvars <- xvars[-yvar]
xlev <- if (length(xvars) > 0) {
xlev <- lapply(m[xvars], levels)
xlev[!sapply(xlev, is.null)]
}
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0)
x <- x[, -xint, drop = FALSE]
RET <- list(learn = list(y = y, X = x))
RET$k <- k
RET$terms <- Terms
RET$contrasts <- attr(x, "contrasts")
RET$xlevels <- xlev
RET$theDots <- list(...)
attr(RET, "na.message") <- attr(m, "na.message")
if (!is.null(attr(m, "na.action")))
RET$na.action <- attr(m, "na.action")
class(RET) <- "knnreg"
RET
}
#' @rdname knnreg
#' @method knnreg matrix
#' @export
knnreg.matrix <- function(x, y, k = 5, ...)
{
if(!is.matrix(x)) x <- as.matrix(x)
if(!is.numeric(y)) stop("y must be numeric")
RET <- list(learn = list(y = y, X = x))
RET$k <- k
RET$terms <- NULL
RET$contrasts <- NULL
RET$theDots <- list(...)
class(RET) <- "knnreg"
RET
}
#' @rdname knnreg
#' @method knnreg data.frame
#' @export
knnreg.data.frame <- function(x, y, k = 5, ...)
{
x <- as.data.frame(x, stringsAsFactors = TRUE)
if(!is.numeric(y)) stop("y must be numeric")
RET <- list(learn = list(y = y, X = x))
RET$k <- k
RET$terms <- NULL
RET$contrasts <- NULL
RET$theDots <- list(...)
class(RET) <- "knnreg"
RET
}
#' @rdname knnreg
#' @method print knnreg
#' @export
print.knnreg <- function (x, ...)
{
cat(x$k, "-nearest neighbor regression model\n", sep = "")
invisible(x)
}
#' Predictions from k-Nearest Neighbors Regression Model
#'
#' Predict the outcome of a new observation based on k-NN.
#'
#' This function is a method for the generic function \code{\link{predict}} for
#' class \code{knnreg}. For the details see \code{\link{knnreg}}. This is
#' essentially a copy of \code{\link[ipred]{predict.ipredknn}}.
#'
#' @aliases predict.knnreg
#' @param object object of class \code{knnreg}.
#' @param newdata a data frame or matrix of new observations.
#' @param ... additional arguments.
#' @return a numeric vector
#' @author Max Kuhn, Chris Keefer, adapted from \code{\link[class]{knn}} and
#' \code{\link[ipred]{predict.ipredknn}}
#' @keywords multivariate
#' @method predict knnreg
#' @export
predict.knnreg <- function (object, newdata, ...)
{
if (!inherits(object, "knnreg"))
stop("object not of class knnreg")
if (!is.null(Terms <- object$terms)) {
if (missing(newdata))
newdata <- model.frame(object)
else {
newdata <- model.frame(as.formula(delete.response(Terms)),
newdata)
}
x <- model.matrix(delete.response(Terms), newdata, contrasts = object$contrasts)
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0)
x <- x[, -xint, drop = FALSE]
}
else {
x <- as.matrix(newdata)
}
argList <- list(train = object$learn$X,
test = x,
y = object$learn$y,
k = object$k)
RET <- do.call("knnregTrain", argList)
RET
}
#' @rdname knnreg
#' @export
knnregTrain <- function(train, test, y, k = 5, use.all=TRUE)
{
train <- as.matrix(train)
if(is.null(dim(test))) dim(test) <- c(1, length(test))
test <- as.matrix(test)
if(any(is.na(train)) || any(is.na(test)) || any(is.na(y)))
stop("no missing values are allowed")
p <- ncol(train)
ntr <- nrow(train)
if(length(y) != ntr) stop("'train' and 'class' have different lengths")
if(ntr < k) {
warning(gettextf("k = %d exceeds number %d of patterns", k, ntr),
domain = NA)
k <- ntr
}
if (k < 1)
stop(gettextf("k = %d must be at least 1", k), domain = NA)
nte <- nrow(test)
if(ncol(test) != p) stop("dims of 'test' and 'train differ")
Z <- .C("knn3reg",
as.integer(k),
as.integer(ntr),
as.integer(nte),
as.integer(p),
as.double(train),
as.double(y),
as.double(test),
double(nte),
as.integer(FALSE),
as.integer(use.all))
Z[[8]]
}
|