1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#' @importFrom stats as.formula
#' @export
densityplot.train <- function(x,
data = NULL,
metric = x$metric,
...)
{
if (!is.null(match.call()$data))
warning("explicit 'data' specification ignored")
if(x$control$method %in% c("oob", "LOOCV"))
stop("Resampling plots cannot be done with leave-out-out CV or out-of-bag resampling")
resamp <- x$resample
tNames <- gsub("^\\.", "", names(x$bestTune))
# adapt formula to work with muliple metrics
mName <- names(resamp)[names(resamp) %in% metric][1]
# Look for constant tuning parameters and remove them
numVals <- unlist(
lapply(resamp,
function(u) length(unique(u))))
if(any(numVals == 1))
{
# make sure that these are tuning parameters
resamp <- resamp[, numVals > 1, drop = FALSE]
tNames <- tNames[tNames %in% names(numVals)[numVals > 1]]
}
# Create the formula based on the data
formText <- paste("~", mName)
if(any(tNames %in% colnames(resamp)))
{
formText <- paste(formText,
"|",
paste(
tNames,
collapse = "*"))
}
form <- as.formula(formText)
densityplot(form, data = resamp, ...)
}
#' Lattice functions for plotting resampling results
#'
#' A set of lattice functions are provided to plot the resampled performance
#' estimates (e.g. classification accuracy, RMSE) over tuning parameters (if
#' any).
#'
#' By default, only the resampling results for the optimal model are saved in
#' the \code{train} object. The function \code{\link{trainControl}} can be used
#' to save all the results (see the example below).
#'
#' If leave-one-out or out-of-bag resampling was specified, plots cannot be
#' produced (see the \code{method} argument of \code{\link{trainControl}})
#'
#' For \code{xyplot} and \code{stripplot}, the tuning parameter with the most
#' unique values will be plotted on the x-axis. The remaining parameters (if
#' any) will be used as conditioning variables. For \code{densityplot} and
#' \code{histogram}, all tuning parameters are used for conditioning.
#'
#' Using \code{horizontal = FALSE} in \code{stripplot} works.
#'
#' @aliases stripplot.train xyplot.train densityplot.train histogram.train
#' @param x An object produced by \code{\link{train}}
#' @param data This argument is not used
#' @param metric A character string specifying the single performance metric
#' that will be plotted
#' @param \dots arguments to pass to either
#' \code{\link[lattice:histogram]{histogram}},
#' \code{\link[lattice:histogram]{densityplot}},
#' \code{\link[lattice:xyplot]{xyplot}} or
#' \code{\link[lattice:xyplot]{stripplot}}
#' @return A lattice plot object
#' @author Max Kuhn
#' @seealso \code{\link{train}}, \code{\link{trainControl}},
#' \code{\link[lattice:histogram]{histogram}},
#' \code{\link[lattice:histogram]{densityplot}},
#' \code{\link[lattice:xyplot]{xyplot}},
#' \code{\link[lattice:xyplot]{stripplot}}
#' @keywords hplot
#' @examples
#'
#' \dontrun{
#'
#' library(mlbench)
#' data(BostonHousing)
#'
#' library(rpart)
#' rpartFit <- train(medv ~ .,
#' data = BostonHousing,
#' "rpart",
#' tuneLength = 9,
#' trControl = trainControl(
#' method = "boot",
#' returnResamp = "all"))
#'
#' densityplot(rpartFit,
#' adjust = 1.25)
#'
#' xyplot(rpartFit,
#' metric = "Rsquared",
#' type = c("p", "a"))
#'
#' stripplot(rpartFit,
#' horizontal = FALSE,
#' jitter = TRUE)
#'
#' }
#' @export
histogram.train <- function(x,
data = NULL,
metric = x$metric,
...)
{
if (!is.null(match.call()$data))
warning("explicit 'data' specification ignored")
if(x$control$method %in% c("oob", "LOOCV"))
stop("Resampling plots cannot be done with leave-out-out CV or out-of-bag resampling")
resamp <- x$resample
tNames <- gsub("^\\.", "", names(x$bestTune))
# adapt formula to work with muliple metrics
mName <- names(resamp)[names(resamp) %in% metric][1]
# Look for constant tuning parameters and remove them
numVals <- unlist(
lapply(resamp,
function(u) length(unique(u))))
if(any(numVals == 1))
{
# make sure that these are tuning parameters
resamp <- resamp[, numVals > 1, drop = FALSE]
tNames <- tNames[tNames %in% names(numVals)[numVals > 1]]
}
# Create the formula based on the data
formText <- paste("~", mName)
if(any(tNames %in% colnames(resamp)))
{
formText <- paste(formText,
"|",
paste(
tNames,
collapse = "*"))
}
form <- as.formula(formText)
histogram(form, data = resamp, ...)
}
#' @importFrom stats as.formula
#' @export
stripplot.train <- function(x,
data = NULL,
metric = x$metric,
...)
{
if (!is.null(match.call()$data))
warning("explicit 'data' specification ignored")
if(x$control$method %in% c("oob", "LOOCV"))
stop("Resampling plots cannot be done with leave-out-out CV or out-of-bag resampling")
resamp <- x$resample
tNames <- gsub("^\\.", "", names(x$bestTune))
# adapt formula to work with muliple metrics
mName <- names(resamp)[names(resamp) %in% metric][1]
# Look for constant tuning parameters and remove them
numVals <- unlist(
lapply(resamp,
function(u) length(unique(u))))
if(any(numVals == 1))
{
# make sure that these are tuning parameters
resamp <- resamp[, numVals > 1, drop = FALSE]
tNames <- tNames[tNames %in% names(numVals)[numVals > 1]]
}
# determine which tuning parameter has the most values
tNames1 <- names(which.max(numVals[names(numVals) %in% tNames]))
tNames2 <- tNames[!(tNames %in% tNames1)]
# The variable in tNames1 will be converted to a factor, so
# we will make sure that numeric data gets changed correctly
resamp[,tNames1] <- factor(
as.character(resamp[,tNames1]),
levels = paste(
sort(unique(resamp[,tNames1]))))
# Create the formula based on the data
if(any(tNames %in% colnames(resamp)))
{
theDots <- list(...)
if(any(names(theDots) == "horizontal"))
{
formText <- if(theDots$horizontal) paste(tNames1, "~", mName) else paste(mName, "~", tNames1)
} else formText <- paste(tNames1, "~", mName)
if(length(tNames2) > 0)
{
formText <- paste(formText,
"|",
paste(
tNames2,
collapse = "*"))
}
} else formText <- paste("~", mName)
form <- as.formula(formText)
stripplot(form, data = resamp, ...)
}
#' @importFrom stats as.formula
#' @export
xyplot.train <- function(x,
data = NULL,
metric = x$metric,
...)
{
if (!is.null(match.call()$data))
warning("explicit 'data' specification ignored")
if(x$control$method %in% c("oob", "LOOCV"))
stop("Resampling plots cannot be done with leave-out-out CV or out-of-bag resampling")
resamp <- x$resample
tNames <- gsub("^\\.", "", names(x$bestTune))
# adapt formula to work with muliple metrics
mName <- names(resamp)[names(resamp) %in% metric][1]
# Look for constant tuning parameters and remove them
numVals <- unlist(
lapply(resamp,
function(u) length(unique(u))))
if(any(numVals == 1))
{
# make sure that these are tuning parameters
resamp <- resamp[, numVals > 1, drop = FALSE]
tNames <- tNames[tNames %in% names(numVals)[numVals > 1]]
}
# determine which tuning parameter has the most values
tNames1 <- names(which.max(numVals[names(numVals) %in% tNames]))
tNames2 <- tNames[!(tNames %in% tNames1)]
# Create the formula based on the data
if(any(tNames %in% colnames(resamp)))
{
formText <- paste(mName, "~", tNames1)
if(length(tNames2) > 0)
{
formText <- paste(formText,
"|",
paste(
tNames2,
collapse = "*"))
}
} else stop("there must be at least one tuning parameter for a scatter plot")
form <- as.formula(formText)
xyplot(form, data = resamp, ...)
}
|