File: pcaNNet.R

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (226 lines) | stat: -rw-r--r-- 8,094 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# add model averaging?
# check predict method with formula interface
# how to handle variable imp?


#' Neural Networks with a Principal Component Step
#'
#' Run PCA on a dataset, then use it in a neural network model
#'
#' The function first will run principal component analysis on the data. The
#' cumulative percentage of variance is computed for each principal component.
#' The function uses the \code{thresh} argument to determine how many
#' components must be retained to capture this amount of variance in the
#' predictors.
#'
#' The principal components are then used in a neural network model.
#'
#' When predicting samples, the new data are similarly transformed using the
#' information from the PCA analysis on the training data and then predicted.
#'
#' Because the variance of each predictor is used in the PCA analysis, the code
#' does a quick check to make sure that each predictor has at least two
#' distinct values. If a predictor has one unique value, it is removed prior to
#' the analysis.
#'
#' @aliases pcaNNet pcaNNet.default predict.pcaNNet pcaNNet.formula
#' @param formula A formula of the form \code{class ~ x1 + x2 + \dots{}}
#' @param x matrix or data frame of \code{x} values for examples.
#' @param y matrix or data frame of target values for examples.
#' @param weights (case) weights for each example - if missing defaults to 1.
#' @param thresh a threshold for the cumulative proportion of variance to
#' capture from the PCA analysis. For example, to retain enough PCA components
#' to capture 95 percent of variation, set \code{thresh = .95}
#' @param data Data frame from which variables specified in \code{formula} are
#' preferentially to be taken.
#' @param subset An index vector specifying the cases to be used in the
#' training sample.  (NOTE: If given, this argument must be named.)
#' @param na.action A function to specify the action to be taken if \code{NA}s
#' are found. The default action is for the procedure to fail.  An alternative
#' is na.omit, which leads to rejection of cases with missing values on any
#' required variable.  (NOTE: If given, this argument must be named.)
#' @param contrasts a list of contrasts to be used for some or all of the
#' factors appearing as variables in the model formula.
#' @param object an object of class \code{pcaNNet} as returned by
#' \code{pcaNNet}.
#' @param newdata matrix or data frame of test examples. A vector is considered
#' to be a row vector comprising a single case.
#' @param type Type of output
#' @param \dots arguments passed to \code{\link[nnet]{nnet}}, such as
#' \code{size}, \code{decay}, etc.
#' @return For \code{pcaNNet}, an object of \code{"pcaNNet"} or
#' \code{"pcaNNet.formula"}. Items of interest in the output are: \item{pc
#' }{the output from \code{\link{preProcess}}} \item{model }{the model
#' generated from \code{\link[nnet]{nnet}}} \item{names }{if any predictors had
#' only one distinct value, this is a character string of the remaining
#' columns. Otherwise a value of \code{NULL}}
#' @author These are heavily based on the \code{nnet} code from Brian Ripley.
#' @seealso \code{\link[nnet]{nnet}}, \code{\link{preProcess}}
#' @references Ripley, B. D. (1996) \emph{Pattern Recognition and Neural
#' Networks.} Cambridge.
#' @keywords neural
#' @examples
#'
#' data(BloodBrain)
#' modelFit <- pcaNNet(bbbDescr[, 1:10], logBBB, size = 5, linout = TRUE, trace = FALSE)
#' modelFit
#'
#' predict(modelFit, bbbDescr[, 1:10])
#'
#' @export pcaNNet
pcaNNet <- function (x, ...)
   UseMethod("pcaNNet")


# this is a near copy of nnet.formula
#' @rdname pcaNNet
#' @method pcaNNet formula
#' @importFrom stats .getXlevels contrasts model.matrix model.response model.weights
#' @export
pcaNNet.formula <- function (formula, data, weights, ...,
                             thresh = .99,
                             subset, na.action, contrasts = NULL)
{

    m <- match.call(expand.dots = FALSE)
    if (is.matrix(eval.parent(m$data)))
        m$data <- as.data.frame(data, stringsAsFactors = TRUE)
    m$... <- m$contrasts <- NULL
    m[[1]] <- as.name("model.frame")
    m <- eval.parent(m)
    Terms <- attr(m, "terms")
    x <- model.matrix(Terms, m, contrasts)
    cons <- attr(x, "contrast")
    xint <- match("(Intercept)", colnames(x), nomatch = 0)
    if (xint > 0)
        x <- x[, -xint, drop = FALSE]
    w <- model.weights(m)
    if (length(w) == 0)
        w <- rep(1, nrow(x))
    y <- model.response(m)

    res <- pcaNNet.default(x, y, weights = w, thresh = thresh, ...)
    res$terms <- Terms
    res$coefnames <- colnames(x)
    res$na.action <- attr(m, "na.action")
    res$contrasts <- cons
    res$xlevels <- .getXlevels(Terms, m)
    class(res) <- c("pcaNNet.formula", "pcaNNet")
    res
}

#' @rdname pcaNNet
#' @method pcaNNet default
#' @export
pcaNNet.default <- function(x, y, thresh = .99, ...)
  {
    requireNamespaceQuietStop("nnet")

    # check for no variance data
    isZV <- apply(x, 2,
                  function(u) length(unique(u)) < 2)
    if(any(isZV))
      {
        x <- x[,!isZV, drop = FALSE]
        xNames <- colnames(x)
      } else xNames <- NULL

    # get pca
    pp <- preProcess(x, "pca", thresh = thresh)
    x <- predict(pp, x)

    # check for factors

    if(is.factor(y))
      {
        classLev <- levels(y)
        y <- class2ind(y)
      } else classLev <- NULL


    # fit nnet
    modelFit <- nnet::nnet(x, y, ...)
    modelFit$lev <- classLev

    # return results
    out <- list(model = modelFit,
                pc = pp,
                names = xNames)
    class(out) <- "pcaNNet"
    out
  }

#' @rdname pcaNNet
#' @method print pcaNNet
#' @export
print.pcaNNet <- function (x, ...)
{
  cat("Neural Network Model with PCA Pre-Processing\n\n")

  cat("Created from", x$pc$dim[1], "samples and", x$pc$dim[2], "variables\n")
  cat("PCA needed", x$pc$numComp, "components to capture",
      round(x$pc$thresh * 100, 2), "percent of the variance\n\n")

  print(x$model)
  cat("\n")
  invisible(x)
}

#' @rdname pcaNNet
#' @method predict pcaNNet
#' @importFrom stats .checkMFClasses delete.response model.frame model.matrix predict na.omit fitted
#' @export
predict.pcaNNet <- function(object, newdata, type = c("raw", "class", "prob"), ...)
  {
    requireNamespaceQuietStop("nnet")
    if (!inherits(object, "pcaNNet"))
      stop("object not of class \"pcaNNet\"")
    if (missing(newdata))
      {
        if(is.null(object$model$lev))
           {
             return(fitted(object$model))
           } else {
             scores <- fitted(object$model)
             classes <- colnames(scores)[apply(scores, 1, which.max)]
             classes <- factor(as.character(classes), levels = object$model$lev)
             if(type[1]== "raw") return(scores) else return(classes)
           }
      }  else {
        if (inherits(object, "pcaNNet.formula")) {
          newdata <- as.data.frame(newdata, stringsAsFactors = TRUE)
          rn <- row.names(newdata)
          Terms <- delete.response(object$terms)
          m <- model.frame(Terms, newdata, na.action = na.omit,
                           xlev = object$xlevels)
          if (!is.null(cl <- attr(Terms, "dataClasses")))
            .checkMFClasses(cl, m)
          keep <- match(row.names(m), rn)
          x <- model.matrix(Terms, m, contrasts = object$contrasts)
          xint <- match("(Intercept)", colnames(x), nomatch = 0)
          if (xint > 0)
            x <- x[, -xint, drop = FALSE]
        }
        else {
          if (is.null(dim(newdata)))
            dim(newdata) <- c(1, length(newdata))
          x <- as.matrix(newdata)
          if (any(is.na(x)))
            stop("missing values in 'x'")
          keep <- 1:nrow(x)
          rn <- rownames(x)
        }
      }

    if(!is.null(object$names)) x <- x[, object$names, drop = FALSE]

    x <- predict(object$pc, x)
    if(type[1] %in% c("raw", "class")) {
      out <- predict(object$model, x, type = type[1], ...)
    } else {
      out <- predict(object$model, x, type = "raw", ...)
      out <- t(apply(out, 1, function(x) x/sum(x)))
    }
    out
  }