1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
# add model averaging?
# check predict method with formula interface
# how to handle variable imp?
#' Neural Networks with a Principal Component Step
#'
#' Run PCA on a dataset, then use it in a neural network model
#'
#' The function first will run principal component analysis on the data. The
#' cumulative percentage of variance is computed for each principal component.
#' The function uses the \code{thresh} argument to determine how many
#' components must be retained to capture this amount of variance in the
#' predictors.
#'
#' The principal components are then used in a neural network model.
#'
#' When predicting samples, the new data are similarly transformed using the
#' information from the PCA analysis on the training data and then predicted.
#'
#' Because the variance of each predictor is used in the PCA analysis, the code
#' does a quick check to make sure that each predictor has at least two
#' distinct values. If a predictor has one unique value, it is removed prior to
#' the analysis.
#'
#' @aliases pcaNNet pcaNNet.default predict.pcaNNet pcaNNet.formula
#' @param formula A formula of the form \code{class ~ x1 + x2 + \dots{}}
#' @param x matrix or data frame of \code{x} values for examples.
#' @param y matrix or data frame of target values for examples.
#' @param weights (case) weights for each example - if missing defaults to 1.
#' @param thresh a threshold for the cumulative proportion of variance to
#' capture from the PCA analysis. For example, to retain enough PCA components
#' to capture 95 percent of variation, set \code{thresh = .95}
#' @param data Data frame from which variables specified in \code{formula} are
#' preferentially to be taken.
#' @param subset An index vector specifying the cases to be used in the
#' training sample. (NOTE: If given, this argument must be named.)
#' @param na.action A function to specify the action to be taken if \code{NA}s
#' are found. The default action is for the procedure to fail. An alternative
#' is na.omit, which leads to rejection of cases with missing values on any
#' required variable. (NOTE: If given, this argument must be named.)
#' @param contrasts a list of contrasts to be used for some or all of the
#' factors appearing as variables in the model formula.
#' @param object an object of class \code{pcaNNet} as returned by
#' \code{pcaNNet}.
#' @param newdata matrix or data frame of test examples. A vector is considered
#' to be a row vector comprising a single case.
#' @param type Type of output
#' @param \dots arguments passed to \code{\link[nnet]{nnet}}, such as
#' \code{size}, \code{decay}, etc.
#' @return For \code{pcaNNet}, an object of \code{"pcaNNet"} or
#' \code{"pcaNNet.formula"}. Items of interest in the output are: \item{pc
#' }{the output from \code{\link{preProcess}}} \item{model }{the model
#' generated from \code{\link[nnet]{nnet}}} \item{names }{if any predictors had
#' only one distinct value, this is a character string of the remaining
#' columns. Otherwise a value of \code{NULL}}
#' @author These are heavily based on the \code{nnet} code from Brian Ripley.
#' @seealso \code{\link[nnet]{nnet}}, \code{\link{preProcess}}
#' @references Ripley, B. D. (1996) \emph{Pattern Recognition and Neural
#' Networks.} Cambridge.
#' @keywords neural
#' @examples
#'
#' data(BloodBrain)
#' modelFit <- pcaNNet(bbbDescr[, 1:10], logBBB, size = 5, linout = TRUE, trace = FALSE)
#' modelFit
#'
#' predict(modelFit, bbbDescr[, 1:10])
#'
#' @export pcaNNet
pcaNNet <- function (x, ...)
UseMethod("pcaNNet")
# this is a near copy of nnet.formula
#' @rdname pcaNNet
#' @method pcaNNet formula
#' @importFrom stats .getXlevels contrasts model.matrix model.response model.weights
#' @export
pcaNNet.formula <- function (formula, data, weights, ...,
thresh = .99,
subset, na.action, contrasts = NULL)
{
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval.parent(m$data)))
m$data <- as.data.frame(data, stringsAsFactors = TRUE)
m$... <- m$contrasts <- NULL
m[[1]] <- as.name("model.frame")
m <- eval.parent(m)
Terms <- attr(m, "terms")
x <- model.matrix(Terms, m, contrasts)
cons <- attr(x, "contrast")
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0)
x <- x[, -xint, drop = FALSE]
w <- model.weights(m)
if (length(w) == 0)
w <- rep(1, nrow(x))
y <- model.response(m)
res <- pcaNNet.default(x, y, weights = w, thresh = thresh, ...)
res$terms <- Terms
res$coefnames <- colnames(x)
res$na.action <- attr(m, "na.action")
res$contrasts <- cons
res$xlevels <- .getXlevels(Terms, m)
class(res) <- c("pcaNNet.formula", "pcaNNet")
res
}
#' @rdname pcaNNet
#' @method pcaNNet default
#' @export
pcaNNet.default <- function(x, y, thresh = .99, ...)
{
requireNamespaceQuietStop("nnet")
# check for no variance data
isZV <- apply(x, 2,
function(u) length(unique(u)) < 2)
if(any(isZV))
{
x <- x[,!isZV, drop = FALSE]
xNames <- colnames(x)
} else xNames <- NULL
# get pca
pp <- preProcess(x, "pca", thresh = thresh)
x <- predict(pp, x)
# check for factors
if(is.factor(y))
{
classLev <- levels(y)
y <- class2ind(y)
} else classLev <- NULL
# fit nnet
modelFit <- nnet::nnet(x, y, ...)
modelFit$lev <- classLev
# return results
out <- list(model = modelFit,
pc = pp,
names = xNames)
class(out) <- "pcaNNet"
out
}
#' @rdname pcaNNet
#' @method print pcaNNet
#' @export
print.pcaNNet <- function (x, ...)
{
cat("Neural Network Model with PCA Pre-Processing\n\n")
cat("Created from", x$pc$dim[1], "samples and", x$pc$dim[2], "variables\n")
cat("PCA needed", x$pc$numComp, "components to capture",
round(x$pc$thresh * 100, 2), "percent of the variance\n\n")
print(x$model)
cat("\n")
invisible(x)
}
#' @rdname pcaNNet
#' @method predict pcaNNet
#' @importFrom stats .checkMFClasses delete.response model.frame model.matrix predict na.omit fitted
#' @export
predict.pcaNNet <- function(object, newdata, type = c("raw", "class", "prob"), ...)
{
requireNamespaceQuietStop("nnet")
if (!inherits(object, "pcaNNet"))
stop("object not of class \"pcaNNet\"")
if (missing(newdata))
{
if(is.null(object$model$lev))
{
return(fitted(object$model))
} else {
scores <- fitted(object$model)
classes <- colnames(scores)[apply(scores, 1, which.max)]
classes <- factor(as.character(classes), levels = object$model$lev)
if(type[1]== "raw") return(scores) else return(classes)
}
} else {
if (inherits(object, "pcaNNet.formula")) {
newdata <- as.data.frame(newdata, stringsAsFactors = TRUE)
rn <- row.names(newdata)
Terms <- delete.response(object$terms)
m <- model.frame(Terms, newdata, na.action = na.omit,
xlev = object$xlevels)
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, m)
keep <- match(row.names(m), rn)
x <- model.matrix(Terms, m, contrasts = object$contrasts)
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0)
x <- x[, -xint, drop = FALSE]
}
else {
if (is.null(dim(newdata)))
dim(newdata) <- c(1, length(newdata))
x <- as.matrix(newdata)
if (any(is.na(x)))
stop("missing values in 'x'")
keep <- 1:nrow(x)
rn <- rownames(x)
}
}
if(!is.null(object$names)) x <- x[, object$names, drop = FALSE]
x <- predict(object$pc, x)
if(type[1] %in% c("raw", "class")) {
out <- predict(object$model, x, type = type[1], ...)
} else {
out <- predict(object$model, x, type = "raw", ...)
out <- t(apply(out, 1, function(x) x/sum(x)))
}
out
}
|