1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#' Plot Method for the train Class
#'
#' This function takes the output of a \code{\link{train}} object and creates a
#' line or level plot using the \pkg{lattice} or \pkg{ggplot2} libraries.
#'
#' If there are no tuning parameters, or none were varied, an error is
#' produced.
#'
#' If the model has one tuning parameter with multiple candidate values, a plot
#' is produced showing the profile of the results over the parameter. Also, a
#' plot can be produced if there are multiple tuning parameters but only one is
#' varied.
#'
#' If there are two tuning parameters with different values, a plot can be
#' produced where a different line is shown for each value of of the other
#' parameter. For three parameters, the same line plot is created within
#' conditioning panels/facets of the other parameter.
#'
#' Also, with two tuning parameters (with different values), a levelplot (i.e.
#' un-clustered heatmap) can be created. For more than two parameters, this
#' plot is created inside conditioning panels/facets.
#'
#' @aliases plot.train ggplot.train
#' @param x an object of class \code{\link{train}}.
#' @param metric What measure of performance to plot. Examples of possible
#' values are "RMSE", "Rsquared", "Accuracy" or "Kappa". Other values can be
#' used depending on what metrics have been calculated.
#' @param plotType a string describing the type of plot (\code{"scatter"},
#' \code{"level"} or \code{"line"} (\code{plot} only))
#' @param digits an integer specifying the number of significant digits used to
#' label the parameter value.
#' @param xTrans a function that will be used to scale the x-axis in scatter
#' plots.
#' @param data an object of class \code{\link{train}}.
#' @param output either "data", "ggplot" or "layered". The first returns a data
#' frame while the second returns a simple \code{ggplot} object with no layers.
#' The third value returns a plot with a set of layers.
#' @param nameInStrip a logical: if there are more than 2 tuning parameters,
#' should the name and value be included in the panel title?
#' @param highlight a logical: if \code{TRUE}, a diamond is placed around the
#' optimal parameter setting for models using grid search.
#' @param mapping,environment unused arguments to make consistent with
#' \pkg{ggplot2} generic method
#' @param \dots \code{plot} only: specifications to be passed to
#' \code{\link[lattice]{levelplot}}, \code{\link[lattice]{xyplot}},
#' \code{\link[lattice:xyplot]{stripplot}} (for line plots). The function
#' automatically sets some arguments (e.g. axis labels) but passing in values
#' here will over-ride the defaults
#' @author Max Kuhn
#' @seealso \code{\link{train}}, \code{\link[lattice]{levelplot}},
#' \code{\link[lattice]{xyplot}}, \code{\link[lattice:xyplot]{stripplot}},
#' \code{\link[ggplot2]{ggplot}}
#' @references Kuhn (2008), ``Building Predictive Models in R Using the caret''
#' (\doi{10.18637/jss.v028.i05})
#' @keywords hplot
#' @method plot train
#' @export
#' @examples
#'
#'
#' \dontrun{
#' library(klaR)
#' rdaFit <- train(Species ~ .,
#' data = iris,
#' method = "rda",
#' control = trainControl(method = "cv"))
#' plot(rdaFit)
#' plot(rdaFit, plotType = "level")
#'
#' ggplot(rdaFit) + theme_bw()
#'
#' }
#'
#' @export plot.train
"plot.train" <- function(x,
plotType = "scatter",
metric = x$metric[1],
digits = getOption("digits") - 3,
xTrans = NULL,
nameInStrip = FALSE,
...)
{
## Error trap
if(!(plotType %in% c("level", "scatter", "line"))) stop("plotType must be either level, scatter or line")
cutpoints <- c(0, 1.9, 2.9, 3.9, Inf)
## define some functions
prettyVal <- function(u, dig, Name = NULL)
{
if(is.numeric(u))
{
if(!is.null(Name)) u <- paste(gsub(".", " ", Name, fixed = TRUE),
": ",
format(u, digits = dig), sep = "")
return(factor(u))
} else return(if(!is.factor(u)) as.factor(u) else u)
}
## Get tuning parameter info
params <- as.character(x$modelInfo$parameters$parameter)
if(grepl("adapt", x$control$method))
warning("When using adaptive resampling, this plot may not accurately capture the relationship between the tuning parameters and model performance.")
plotIt <- "yes"
if(all(params == "parameter"))
{
plotIt <- "There are no tuning parameters for this model."
} else {
dat <- x$results
## Some exceptions for pretty printing
if(x$method == "nb") dat$usekernel <- factor(ifelse(dat$usekernel, "Nonparametric", "Gaussian"))
if(x$method == "gam") dat$select <- factor(ifelse(dat$select, "Feature Selection", "No Feature Selection"))
if(x$method == "qrnn") dat$bag <- factor(ifelse(dat$bag, "Bagging", "No Bagging"))
if(x$method == "C5.0") dat$winnow <- factor(ifelse(dat$winnow, "Winnowing", "No Winnowing"))
## if(x$method %in% c("M5Rules", "M5", "PART")) dat$pruned <- factor(ifelse(dat$pruned == "Yes", "Pruned", "Unpruned"))
## if(x$method %in% c("M5Rules", "M5")) dat$smoothed <- factor(ifelse(dat$smoothed == "Yes", "Smoothed", "Unsmoothed"))
if(x$method == "M5") dat$rules <- factor(ifelse(dat$rules == "Yes", "Rules", "Trees"))
## if(x$method == "vbmpRadial") dat$estimateTheta <- factor(ifelse(dat$estimateTheta == "Yes", "Estimate Theta", "Do Not Estimate Theta"))
## Check to see which tuning parameters were varied
paramValues <- apply(dat[,params,drop = FALSE],
2,
function(x) length(unique(x)))
##paramValues <- paramValues[order(paramValues)]
if(any(paramValues > 1))
{
params <- names(paramValues)[paramValues > 1]
} else plotIt <- "There are no tuning parameters with more than 1 value."
}
if(plotIt == "yes")
{
p <- length(params)
dat <- dat[, c(metric, params)]
if(p > 1) {
numUnique <- unlist(lapply(dat[, -1], function(x) length(unique(x))))
numUnique <- sort(numUnique, decreasing = TRUE)
dat <- dat[, c(metric, names(numUnique))]
params <- names(numUnique)
}
## The conveintion is that the first parameter (in
## position #2 of dat) is plotted on the x-axis,
## the second parameter is the grouping variable
## and the rest are conditioning variables
if(!is.null(xTrans) & plotType == "scatter") dat[,2] <- xTrans(dat[,2])
## We need to pretty-up some of the values of grouping
## or conditioning variables
resampText <- resampName(x, FALSE)
if(plotType %in% c("line", "scatter"))
{
if(plotType == "scatter")
{
if(p >= 2) for(i in 3:ncol(dat))
dat[,i] <- prettyVal(dat[,i], dig = digits, Name = if(i > 3) params[i-1] else NULL)
} else {
for(i in 2:ncol(dat))
dat[,i] <- prettyVal(dat[,i], dig = digits, Name = if(i > 3) params[i-1] else NULL)
}
for(i in 2:ncol(dat)) if(is.logical(dat[,i])) dat[,i] <- factor(dat[,i])
if(p > 2 & nameInStrip) {
strip_vars <- params[-(1:2)]
strip_lab <- subset(x$modelInfo$parameters, parameter %in% strip_vars)$label
for(i in seq_along(strip_vars))
dat[, strip_vars[i]] <- factor(paste(strip_lab[i], dat[, strip_vars[i]], sep = ": "))
}
## make formula
form <- if(p <= 2)
{
as.formula(
paste(metric, "~", params[1], sep = ""))
} else as.formula(paste(metric, "~", params[1], "|",
paste(params[-(1:2)], collapse = "*"),
sep = ""))
defaultArgs <- list(x = form,
data = dat,
groups = if(p > 1) dat[,params[2]] else NULL)
if(length(list(...)) > 0) defaultArgs <- c(defaultArgs, list(...))
lNames <- names(defaultArgs)
if(!("ylab" %in% lNames)) defaultArgs$ylab <- paste(metric, resampText)
if(!("type" %in% lNames) & plotType == "scatter") defaultArgs$type <- c("g", "o")
if(!("type" %in% lNames) & plotType == "line") defaultArgs$type <- c("g", "o")
if(p > 1)
{
## I apologize in advance for the following 3 line kludge.
groupCols <- 4
if(length(unique(dat[,3])) < 4) groupCols <- length(unique(dat[,3]))
if(length(unique(dat[,3])) %in% 5:6) groupCols <- 3
groupCols <- as.numeric(
cut(length(unique(dat[,3])),
cutpoints,
include.lowest = TRUE))
if(!(any(c("key", "auto.key") %in% lNames)))
defaultArgs$auto.key <- list(columns = groupCols,
lines = TRUE,
title = as.character(x$modelInfo$parameter$label)[x$modelInfo$parameter$parameter == params[2]],
cex.title = 1)
}
if(!("xlab" %in% lNames)) defaultArgs$xlab <- as.character(x$modelInfo$parameter$label)[x$modelInfo$parameter$parameter == params[1]]
if(plotType == "scatter")
{
out <- do.call("xyplot", defaultArgs)
} else {
## line plot #########################
out <- do.call("stripplot", defaultArgs)
}
}
if(plotType == "level")
{
if(p == 1) stop("There must be at least 2 tuning parameters with multiple values")
for(i in 2:ncol(dat))
dat[,i] <- prettyVal(dat[,i], dig = digits, Name = if(i > 3) params[i-1] else NULL)
if(p > 2 & nameInStrip) {
strip_vars <- params[-(1:2)]
strip_lab <- subset(x$modelInfo$parameters, parameter %in% strip_vars)$label
for(i in seq_along(strip_vars))
dat[, strip_vars[i]] <- factor(paste(strip_lab[i], dat[, strip_vars[i]], sep = ": "))
}
## make formula
form <- if(p <= 2)
{
as.formula(paste(metric, "~", params[1], "*", params[2], sep = ""))
} else as.formula(paste(metric, "~", params[1], "*", params[2], "|",
paste(params[-(1:2)], collapse = "*"),
sep = ""))
defaultArgs <- list(x = form, data = dat)
if(length(list(...)) > 0) defaultArgs <- c(defaultArgs, list(...))
lNames <- names(defaultArgs)
if(!("sub" %in% lNames)) defaultArgs$sub <- paste(metric, resampText)
if(!("xlab" %in% lNames)) defaultArgs$xlab <- as.character(x$modelInfo$parameter$label)[x$modelInfo$parameter$parameter == params[1]]
if(!("ylab" %in% lNames)) defaultArgs$ylab <- as.character(x$modelInfo$parameter$label)[x$modelInfo$parameter$parameter == params[2]]
out <- do.call("levelplot", defaultArgs)
}
} else stop(plotIt)
out
}
|