1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#' Calculates performance across resamples
#'
#' Given two numeric vectors of data, the mean squared error and
#' R-squared are calculated. For two factors, the overall agreement
#' rate and Kappa are determined.
#'
#' \code{postResample} is meant to be used with \code{apply}
#' across a matrix. For numeric data the code checks to see if the
#' standard deviation of either vector is zero. If so, the
#' correlation between those samples is assigned a value of zero.
#' \code{NA} values are ignored everywhere.
#'
#' Note that many models have more predictors (or parameters) than
#' data points, so the typical mean squared error denominator (n -
#' p) does not apply. Root mean squared error is calculated using
#' \code{sqrt(mean((pred - obs)^2}. Also, \eqn{R^2} is calculated
#' wither using as the square of the correlation between the
#' observed and predicted outcomes when \code{form = "corr"}. when
#' \code{form = "traditional"}, \deqn{ R^2 = 1-\frac{\sum (y_i -
#' \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} }. Mean absolute error
#' is calculated using \code{mean(abs(pred-obs))}.
#'
#' \code{defaultSummary} is the default function to compute
#' performance metrics in \code{\link{train}}. It is a wrapper
#' around \code{postResample}. The first argument is \code{data},
#' which is \code{data.frame} with columns named \code{obs} and
#' \code{pred} for the observed and predicted outcome values
#' (either numeric data for regression or character values for
#' classification). The second argument is \code{lev}, a character
#' string that has the outcome factor levels or NULL for a
#' regression model. The third parameter is \code{model}, which can
#' be used if a summary metric is specific to a model function. If
#' other columns from the data are required to compute the summary
#' statistics, but should not be used in the model, the
#' \code{recipe} method for \code{\link{train}} can be used.
#'
#' \code{twoClassSummary} computes sensitivity, specificity and
#' the area under the ROC curve. \code{mnLogLoss} computes the
#' minus log-likelihood of the multinomial distribution (without
#' the constant term): \deqn{ -logLoss = \frac{-1}{n}\sum_{i=1}^n
#' \sum_{j=1}^C y_{ij} \log(p_{ij}) } where the \code{y} values are
#' binary indicators for the classes and \code{p} are the predicted
#' class probabilities.
#'
#' \code{prSummary} (for precision and recall) computes values for
#' the default 0.50 probability cutoff as well as the area under
#' the precision-recall curve across all cutoffs and is labelled as
#' \code{"AUC"} in the output. If assumes that the first level of
#' the factor variables corresponds to a relevant result but the
#' \code{lev} argument can be used to change this.
#'
#' \code{multiClassSummary} computes some overall measures of for
#' performance (e.g. overall accuracy and the Kappa statistic) and
#' several averages of statistics calculated from "one-versus-all"
#' configurations. For example, if there are three classes, three
#' sets of sensitivity values are determined and the average is
#' reported with the name ("Mean_Sensitivity"). The same is true
#' for a number of statistics generated by
#' \code{\link{confusionMatrix}}. With two classes, the basic
#' sensitivity is reported with the name "Sensitivity".
#'
#' To use \code{twoClassSummary} and/or \code{mnLogLoss}, the
#' \code{classProbs} argument of \code{\link{trainControl}} should
#' be \code{TRUE}. \code{multiClassSummary} can be used without
#' class probabilities but some statistics (e.g. overall log loss
#' and the average of per-class area under the ROC curves) will not
#' be in the result set.
#'
#' Other functions can be used via the \code{summaryFunction}
#' argument of \code{\link{trainControl}}. Custom functions must
#' have the same arguments as\code{defaultSummary}.
#'
#' The function \code{getTrainPerf} returns a one row data frame
#' with the resampling results for the chosen model. The statistics
#' will have the prefix "\code{Train}" (i.e. "\code{TrainROC}").
#' There is also a column called "\code{method}" that echoes the
#' argument of the call to \code{\link{trainControl}} of the same
#' name.
#'
#' @aliases postResample defaultSummary twoClassSummary prSummary
#' getTrainPerf mnLogLoss R2 RMSE multiClassSummary MAE
#' @param pred A vector of numeric data (could be a factor)
#' @param obs A vector of numeric data (could be a factor)
#' @param data a data frame with columns \code{obs} and
#' \code{pred} for the observed and predicted outcomes. For metrics
#' that rely on class probabilities, such as
#' \code{twoClassSummary}, columns should also include predicted
#' probabilities for each class. See the \code{classProbs} argument
#' to \code{\link{trainControl}}.
#' @param lev a character vector of factors levels for the
#' response. In regression cases, this would be \code{NULL}.
#' @param model a character string for the model name (as taken
#' from the \code{method} argument of \code{\link{train}}.
#' @return A vector of performance estimates.
#' @author Max Kuhn, Zachary Mayer
#' @seealso \code{\link{trainControl}}
#' @references Kvalseth. Cautionary note about \eqn{R^2}. American Statistician
#' (1985) vol. 39 (4) pp. 279-285
#' @keywords utilities
#' @examples
#'
#' predicted <- matrix(rnorm(50), ncol = 5)
#' observed <- rnorm(10)
#' apply(predicted, 2, postResample, obs = observed)
#'
#' classes <- c("class1", "class2")
#' set.seed(1)
#' dat <- data.frame(obs = factor(sample(classes, 50, replace = TRUE)),
#' pred = factor(sample(classes, 50, replace = TRUE)),
#' class1 = runif(50))
#' dat$class2 <- 1 - dat$class1
#'
#' defaultSummary(dat, lev = classes)
#' twoClassSummary(dat, lev = classes)
#' prSummary(dat, lev = classes)
#' mnLogLoss(dat, lev = classes)
#'
#' @export postResample
postResample <- function(pred, obs)
{
isNA <- is.na(pred)
pred <- pred[!isNA]
obs <- obs[!isNA]
if (!is.factor(obs) && is.numeric(obs))
{
if(length(obs) + length(pred) == 0)
{
out <- rep(NA, 3)
} else {
if(length(unique(pred)) < 2 || length(unique(obs)) < 2)
{
resamplCor <- NA
} else {
resamplCor <- try(cor(pred, obs, use = "pairwise.complete.obs"), silent = TRUE)
if (inherits(resamplCor, "try-error")) resamplCor <- NA
}
mse <- mean((pred - obs)^2)
mae <- mean(abs(pred - obs))
out <- c(sqrt(mse), resamplCor^2, mae)
}
names(out) <- c("RMSE", "Rsquared", "MAE")
} else {
if(length(obs) + length(pred) == 0)
{
out <- rep(NA, 2)
} else {
pred <- factor(pred, levels = levels(obs))
requireNamespaceQuietStop("e1071")
out <- unlist(e1071::classAgreement(table(obs, pred)))[c("diag", "kappa")]
}
names(out) <- c("Accuracy", "Kappa")
}
if(any(is.nan(out))) out[is.nan(out)] <- NA
out
}
#' @rdname postResample
#' @importFrom pROC roc
#' @export
twoClassSummary <- function (data, lev = NULL, model = NULL) {
if(length(lev) > 2) {
stop(paste("Your outcome has", length(lev),
"levels. The twoClassSummary() function isn't appropriate."))
}
requireNamespaceQuietStop('pROC')
if (!all(levels(data[, "pred"]) == lev)) {
stop("levels of observed and predicted data do not match")
}
rocObject <- try(pROC::roc(data$obs, data[, lev[1]], direction = ">", quiet = TRUE), silent = TRUE)
rocAUC <- if(inherits(rocObject, "try-error")) NA else rocObject$auc
out <- c(rocAUC,
sensitivity(data[, "pred"], data[, "obs"], lev[1]),
specificity(data[, "pred"], data[, "obs"], lev[2]))
names(out) <- c("ROC", "Sens", "Spec")
out
}
#' @rdname postResample
#' @importFrom stats complete.cases
#' @export
mnLogLoss <- function(data, lev = NULL, model = NULL){
if(is.null(lev)) stop("'lev' cannot be NULL")
if(!all(lev %in% colnames(data)))
stop("'data' should have columns consistent with 'lev'")
if(!all(sort(lev) %in% sort(levels(data$obs))))
stop("'data$obs' should have levels consistent with 'lev'")
dataComplete <- data[complete.cases(data),]
probs <- as.matrix(dataComplete[, lev, drop = FALSE])
logLoss <- ModelMetrics::mlogLoss(dataComplete$obs, probs)
c(logLoss = logLoss)
}
#' @rdname postResample
#' @export
multiClassSummary <- function(data, lev = NULL, model = NULL){
#Check data
if (!all(levels(data[, "pred"]) == levels(data[, "obs"])))
stop("levels of observed and predicted data do not match")
has_class_probs <- all(lev %in% colnames(data))
if(has_class_probs) {
## Overall multinomial loss
lloss <- mnLogLoss(data = data, lev = lev, model = model)
requireNamespaceQuietStop("pROC")
requireNamespaceQuietStop("MLmetrics")
#Calculate custom one-vs-all ROC curves for each class
prob_stats <-
lapply(levels(data[, "pred"]),
function(x){
#Grab one-vs-all data for the class
obs <- ifelse(data[,"obs"] == x, 1, 0)
prob <- data[,x]
roc_auc <- try(pROC::roc(obs, data[,x], direction = "<", quiet = TRUE), silent = TRUE)
roc_auc <- if (inherits(roc_auc, "try-error")) NA else roc_auc$auc
pr_auc <- try(MLmetrics::PRAUC(y_pred = data[,x], y_true = obs),
silent = TRUE)
if(inherits(pr_auc, "try-error"))
pr_auc <- NA
res <- c(ROC = roc_auc, AUC = pr_auc)
return(res)
})
prob_stats <- do.call("rbind", prob_stats)
prob_stats <- colMeans(prob_stats, na.rm = TRUE)
}
#Calculate confusion matrix-based statistics
CM <- confusionMatrix(data[, "pred"], data[, "obs"],
mode = "everything")
#Aggregate and average class-wise stats
#Todo: add weights
# RES: support two classes here as well
if (length(levels(data[, "pred"])) == 2) {
class_stats <- CM$byClass
} else {
class_stats <- colMeans(CM$byClass)
names(class_stats) <- paste("Mean", names(class_stats))
}
# Aggregate overall stats
overall_stats <-
if (has_class_probs)
c(CM$overall,
logLoss = as.numeric(lloss),
AUC = unname(prob_stats["ROC"]),
prAUC = unname(prob_stats["AUC"]))
else
CM$overall
# Combine overall with class-wise stats and remove some stats we don't want
stats <- c(overall_stats, class_stats)
stats <- stats[! names(stats) %in% c('AccuracyNull', "AccuracyLower", "AccuracyUpper",
"AccuracyPValue", "McnemarPValue",
'Mean Prevalence', 'Mean Detection Prevalence')]
# Clean names
names(stats) <- gsub('[[:blank:]]+', '_', names(stats))
# Change name ordering to place most useful first
# May want to remove some of these eventually
stat_list <- c("Accuracy", "Kappa", "Mean_F1",
"Mean_Sensitivity", "Mean_Specificity",
"Mean_Pos_Pred_Value", "Mean_Neg_Pred_Value",
"Mean_Precision", "Mean_Recall",
"Mean_Detection_Rate",
"Mean_Balanced_Accuracy")
if(has_class_probs) stat_list <- c("logLoss", "AUC", "prAUC", stat_list)
if (length(levels(data[, "pred"])) == 2) stat_list <- gsub("^Mean_", "", stat_list)
stats <- stats[c(stat_list)]
return(stats)
}
|