File: preProcess.R

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (1109 lines) | stat: -rw-r--r-- 44,517 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
## Should respect the input class except when there is a conflict or always
## generate a data frame?

ppMethods <- c("BoxCox", "YeoJohnson", "expoTrans", "invHyperbolicSine",
               "center", "scale", "range",
               "knnImpute", "bagImpute", "medianImpute",
               "pca", "ica",
               "spatialSign",
               "ignore", "keep",
               "remove",
               "zv", "nzv", "conditionalX",
               "corr")

invHyperbolicSineFunc <- function(x) log(x+sqrt(x^2+1))

getRangeBounds <- function(pp) {
 if(!is.null(pp$rangeBounds)) {
   list(lower = pp$rangeBounds[1], upper = pp$rangeBounds[2])
 } else {
   list(lower = 0.0, upper = 1.0)
 }
}

#' Pre-Processing of Predictors
#'
#' Pre-processing transformation (centering, scaling etc.) can be estimated
#' from the training data and applied to any data set with the same variables.
#'
#' In all cases, transformations and operations are estimated using the data in
#' \code{x} and these operations are applied to new data using these values;
#' nothing is recomputed when using the \code{predict} function.
#'
#' The Box-Cox (\code{method = "BoxCox"}), Yeo-Johnson (\code{method =
#' "YeoJohnson"}), and exponential transformations (\code{method =
#' "expoTrans"}) have been "repurposed" here: they are being used to transform
#' the predictor variables. The Box-Cox transformation was developed for
#' transforming the response variable while another method, the Box-Tidwell
#' transformation, was created to estimate transformations of predictor data.
#' However, the Box-Cox method is simpler, more computationally efficient and
#' is equally effective for estimating power transformations. The Yeo-Johnson
#' transformation is similar to the Box-Cox model but can accommodate
#' predictors with zero and/or negative values (while the predictors values for
#' the Box-Cox transformation must be strictly positive). The exponential
#' transformation of Manly (1976) can also be used for positive or negative
#' data.
#'
#' \code{method = "center"} subtracts the mean of the predictor's data (again
#' from the data in \code{x}) from the predictor values while \code{method =
#' "scale"} divides by the standard deviation.
#'
#' The "range" transformation scales the data to be within \code{rangeBounds}. If new
#' samples have values larger or smaller than those in the training set, values
#' will be outside of this range.
#'
#' Predictors that are not numeric are ignored in the calculations (including
#' methods "zv`" and "nzv`").
#'
#' \code{method = "zv"} identifies numeric predictor columns with a single
#' value (i.e. having zero variance) and excludes them from further
#' calculations. Similarly, \code{method = "nzv"} does the same by applying
#' \code{\link{nearZeroVar}} exclude "near zero-variance" predictors. The options
#' \code{freqCut} and \code{uniqueCut} can be used to modify the filter.
#'
#' \code{method = "corr"} seeks to filter out highly correlated predictors. See
#' \code{\link{findCorrelation}}.
#'
#' For classification, \code{method = "conditionalX"} examines the distribution
#' of each predictor conditional on the outcome. If there is only one unique
#' value within any class, the predictor is excluded from further calculations
#' (see \code{\link{checkConditionalX}} for an example). When \code{outcome} is
#' not a factor, this calculation is not executed. This operation can be time
#' consuming when used within resampling via \code{\link{train}}.
#'
#' The operations are applied in this order: zero-variance filter, near-zero
#' variance filter, correlation filter, Box-Cox/Yeo-Johnson/exponential transformation, centering,
#' scaling, range, imputation, PCA, ICA then spatial sign. This is a departure
#' from versions of \pkg{caret} prior to version 4.76 (where imputation was
#' done first) and is not backwards compatible if bagging was used for
#' imputation.
#'
#' If PCA is requested but centering and scaling are not, the values will still
#' be centered and scaled. Similarly, when ICA is requested, the data are
#' automatically centered and scaled.
#'
#' k-nearest neighbor imputation is carried out by finding the k closest
#' samples (Euclidian distance) in the training set. Imputation via bagging
#' fits a bagged tree model for each predictor (as a function of all the
#' others). This method is simple, accurate and accepts missing values, but it
#' has much higher computational cost. Imputation via medians takes the median
#' of each predictor in the training set, and uses them to fill missing values.
#' This method is simple, fast, and accepts missing values, but treats each
#' predictor independently, and may be inaccurate.
#'
#' A warning is thrown if both PCA and ICA are requested. ICA, as implemented
#' by the \code{\link[fastICA]{fastICA}} package automatically does a PCA
#' decomposition prior to finding the ICA scores.
#'
#' The function will throw an error of any numeric variables in \code{x} has
#' less than two unique values unless either \code{method = "zv"} or
#' \code{method = "nzv"} are invoked.
#'
#' Non-numeric data will not be pre-processed and their values will be in the
#' data frame produced by the \code{predict} function. Note that when PCA or
#' ICA is used, the non-numeric columns may be in different positions when
#' predicted.
#'
#' @aliases preProcess preProcess.default predict.preProcess
#' @param x a matrix or data frame. Non-numeric predictors are allowed but will
#' be ignored.
#' @param method a character vector specifying the type of processing. Possible
#' values are "BoxCox", "YeoJohnson", "expoTrans", "center", "scale", "range",
#' "knnImpute", "bagImpute", "medianImpute", "pca", "ica", "spatialSign", "corr", "zv",
#' "nzv", and "conditionalX" (see Details below)
#' @param          thresh a cutoff for the cumulative percent of variance to be retained
#' by PCA
#' @param pcaComp the specific number of PCA components to keep. If specified,
#' this over-rides \code{thresh}
#' @param na.remove a logical; should missing values be removed from the
#' calculations?
#' @param object an object of class \code{preProcess}
#' @param newdata a matrix or data frame of new data to be pre-processed
#' @param k the number of nearest neighbors from the training set to use for
#' imputation
#' @param knnSummary function to average the neighbor values per column during
#' imputation
#' @param outcome a numeric or factor vector for the training set outcomes.
#' This can be used to help estimate the Box-Cox transformation of the
#' predictor variables (see Details below)
#' @param fudge a tolerance value: Box-Cox transformation lambda values within
#' +/-fudge will be coerced to 0 and within 1+/-fudge will be coerced to 1.
#' @param numUnique how many unique values should \code{y} have to estimate the
#' Box-Cox transformation?
#' @param verbose a logical: prints a log as the computations proceed
#' @param freqCut the cutoff for the ratio of the most common value to the
#' second most common value. See \code{\link{nearZeroVar}}.
#' @param uniqueCut the cutoff for the percentage of distinct values out of
#' the number of total samples. See \code{\link{nearZeroVar}}.
#' @param cutoff a numeric value for the pair-wise absolute correlation cutoff.
#' See \code{\link{findCorrelation}}.
#' @param rangeBounds a two-element numeric vector specifying closed interval
#' for range transformation
#' @param \dots additional arguments to pass to \code{\link[fastICA]{fastICA}},
#' such as \code{n.comp}
#' @return \code{preProcess} results in a list with elements \item{call}{the
#' function call} \item{method}{a named list of operations and the variables
#' used for each } \item{dim}{the dimensions of \code{x}} \item{bc}{Box-Cox
#' transformation values, see \code{\link{BoxCoxTrans}}} \item{mean}{a vector
#' of means (if centering was requested)} \item{std}{a vector of standard
#' deviations (if scaling or PCA was requested)} \item{rotation}{a matrix of
#' eigenvectors if PCA was requested} \item{method}{the value of \code{method}}
#' \item{thresh}{the value of \code{thresh}} \item{ranges}{a matrix of min and
#' max values for each predictor when \code{method} includes "range" (and
#' \code{NULL} otherwise)} \item{numComp}{the number of principal components
#' required of capture the specified amount of variance} \item{ica}{contains
#' values for the \code{W} and \code{K} matrix of the decomposition}
#' \item{median}{a vector of medians (if median imputation was requested)}
#'
#' \code{predict.preProcess} will produce a data frame.
#' @author Max Kuhn, median imputation by Zachary Mayer
#' @seealso \code{\link{BoxCoxTrans}}, \code{\link{expoTrans}}
#' \code{\link[MASS]{boxcox}}, \code{\link[stats]{prcomp}},
#' \code{\link[fastICA]{fastICA}}, \code{\link{spatialSign}}
#' @references \url{http://topepo.github.io/caret/pre-processing.html}
#'
#' Kuhn and Johnson (2013), Applied Predictive Modeling, Springer, New York
#' (chapter 4)
#'
#' Kuhn (2008), Building predictive models in R using the caret
#' (\doi{10.18637/jss.v028.i05})
#'
#' Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with
#' discussion). Journal of the Royal Statistical Society B, 26, 211-252.
#'
#' Box, G. E. P. and Tidwell, P. W. (1962) Transformation of the independent
#' variables. Technometrics 4, 531-550.
#'
#' Manly, B. L. (1976) Exponential data transformations. The Statistician, 25,
#' 37 - 42.
#'
#' Yeo, I-K. and Johnson, R. (2000). A new family of power transformations to
#' improve normality or symmetry. Biometrika, 87, 954-959.
#' @keywords utilities
#' @examples
#'
#' data(BloodBrain)
#' # one variable has one unique value
#' \dontrun{
#' preProc <- preProcess(bbbDescr)
#'
#' preProc  <- preProcess(bbbDescr[1:100,-3])
#' training <- predict(preProc, bbbDescr[1:100,-3])
#' test     <- predict(preProc, bbbDescr[101:208,-3])
#' }
#'
#' @export preProcess
preProcess <- function(x, ...) UseMethod("preProcess")

#' @rdname preProcess
#' @importFrom stats complete.cases median sd prcomp
#' @export
preProcess.default <- function(x, method = c("center", "scale"),
                               thresh = 0.95,
                               pcaComp = NULL,
                               na.remove = TRUE,
                               k = 5,
                               knnSummary = mean,
                               outcome = NULL,
                               fudge = .2,
                               numUnique = 3,
                               verbose = FALSE,
                               freqCut = 95/5,
                               uniqueCut = 10,
                               cutoff = 0.9,
                               rangeBounds = c(0, 1),
                               ...) {
  if(!inherits(x, "matrix") & !inherits(x, "data.frame"))
    stop("Matrices or data frames are required for preprocessing", call. = FALSE)
  column_types <- get_types(x)
  tmp <- pre_process_options(method, column_types)
  method <- tmp$opts
  wildcards <- tmp$wildcards

  if (any(method == "corr") & !any(method == "zv")) {
    method <- unique(c(method, "zv"))
    if (verbose)
      cat("A zero-variance filter was added for the correlation filter\n")
  }

  ## the row.norm option in fastICA states: "logical value indicating whether rows
  ## of the data matrix X should be standardized beforehand." Basically, this means that
  ## we would center *and* scale before the ICA step, so let's adjust the "scale" method too
  if(any(names(method) == "ica")) {
    theDots <- list(...)
    row.norm <- if(is.null(list(...)$row.norm)) FALSE else list(...)$row.norm
  }

  ## check for zero-variance predictors
  if(any(names(method) == "zv")){
    if(is.data.frame(x)) {
      is_zv <- unlist(lapply(x[, !(colnames(x) %in% method$ignore), drop = FALSE], function(x)
        ifelse(na.remove, length(na.omit(unique(x))), length(unique(x))) <= 1))
    } else {
      is_zv <- apply(x[, !(colnames(x) %in% method$ignore), drop = FALSE], 2, function(x)
        ifelse(na.remove, length(na.omit(unique(x))), length(unique(x))) <= 1)
    }
    if(any(is_zv)) {
      removed <- names(is_zv)[is_zv]
      method <- lapply(method, function(x, vars) x[!(x %in% vars)], vars = removed)
      method$remove <- unique(c(method$remove, removed))
      if(verbose) cat(paste(" ", length(removed), "zero variance predictors were removed.\n"))
    }
    method$zv <- NULL
  }
  ## check for near-zero-variance predictors
  if(any(names(method) == "nzv")){
    is_nzv <- nearZeroVar(x[, !(colnames(x) %in% method$ignore), drop = FALSE],
                          freqCut = freqCut, uniqueCut = uniqueCut)
    if(length(is_nzv) > 0) {
      removed <- colnames(x[, !(colnames(x) %in% method$ignore), drop = FALSE])[is_nzv]
      method <- lapply(method, function(x, vars) x[!(x %in% vars)], vars = removed)
      method$remove <- unique(c(method$remove, removed))
      if(verbose) cat(paste(" ", length(removed), "near-zero variance predictors were removed.\n"))
    }
    method$nzv <- NULL
  }
  ##  check the distribution of the columns of x conditioned on the levels of y and
  ## identifies columns of x that are sparse within groups of y
  if(any(names(method) == "conditionalX") & is.factor(outcome)){
    bad_pred <- checkConditionalX(x = x[, !(colnames(x) %in% method$ignore), drop = FALSE],
                                  y = outcome)
    if(length(bad_pred) > 0) {
      removed <- colnames(x[, !(colnames(x) %in% method$ignore), drop = FALSE])[bad_pred]
      method <- lapply(method, function(x, vars) x[!(x %in% vars)], vars = removed)
      method$remove <- unique(c(method$remove, removed))
      if(verbose) cat(paste(" ", length(removed), "conditionally zero variance predictors.\n"))
    }
    method$conditionalX <- NULL
  }

  ## check for highly correlated predictors
  if(any(names(method) == "corr")){
    cmat <- try(cor(x[, !(colnames(x) %in% c(method$ignore, method$remove)), drop = FALSE],
                    use = "pairwise.complete.obs"),
                silent = TRUE)
    if(!inherits(cmat, "try-error")) {
      high_corr <- findCorrelation(cmat, cutoff = cutoff)
      if(length(high_corr) > 0) {
        removed <- colnames(cmat)[high_corr]
        method$remove <- unique(c(method$remove, removed))
        if(verbose) cat(paste(" ", length(removed), "highly correlated predictors were removed.\n"))
      }
    } else warning(paste("correlation matrix could not be computed:\n", cmat))
    method$corr <- NULL
  }

  x <- x[, !(colnames(x) %in% method$remove), drop = FALSE]
  method = sapply(names(method), function(u)
    if(u != 'remove'){
      method[[u]][ which(( method[[u]] %in% colnames(x)))]
    } else {
      method[[u]]
    }, simplify = FALSE
  )

  if(any(names(method) == "invHyperbolicSine")) {
    if(verbose) cat(" applying invHyperbolicSine\n")
    for(i in method$invHyperbolicSine) x[,i] <- invHyperbolicSineFunc(x[,i])
  }

  if(any(names(method) == "BoxCox")) {
    bc <- group_bc(x[, method$BoxCox, drop = FALSE],
                   fudge = fudge,
                   na.remove = na.remove,
                   numUnique = numUnique,
                   verbose = verbose)
    if(verbose) cat(" applying them to training data\n")
    if(length(bc) != length(method$BoxCox)) {
      method$BoxCox <- if(length(bc) == 0) NULL else names(bc)
    }
    for(i in method$BoxCox) x[,i] <- predict(bc[[i]], x[,i])
  } else bc <- NULL


  if(any(names(method) == "YeoJohnson")) {
    yj <- vapply(
      x[, method$YeoJohnson, drop = FALSE],
      recipes::estimate_yj,
      c(lambda = 0),
      limits = c(-3, 3), ## consistent with `car` defaults
      num_unique = numUnique
    )
    yj <- yj[!is.null(yj) & !is.na(yj)]
    if(length(yj) > 0) {
      if(verbose) cat(" applying them to training data\n")
      if(length(yj) != length(method$YeoJohnson)) {
        method$YeoJohnson <- names(yj)
      }
      # now apply to current data
      if(length(yj) > 0) {
        for(i in seq(along.with = yj)) {
          who <- names(yj)[i]
          x[,who] <- recipes::yj_transform(x[,who], yj[who])
        }
      }
    } else {
      if(verbose) cat(" all of the transformations failed\n")
      yj <- NULL
    }
  } else yj <- NULL

  if(any(names(method) == "expoTrans")) {
    if(verbose)
      cat("Estimating exponential transformations for",
          length(method$expoTrans), "predictors...")
    if(is.data.frame(x)) {
      et <- lapply(x[, method$expoTrans, drop = FALSE],
                   expoTrans.default, numUnique = numUnique)
    } else {
      et <- apply(x[, method$expoTrans, drop = FALSE], 2,
                  expoTrans.default, numUnique = numUnique)
    }
    if(verbose) cat(" applying them to training data\n")
    omit_expo <- NULL
    for(i in names(et)) {
      tmp_trans <- predict(et[[i]], x[,i])
      if(any(is.infinite(tmp_trans))) {
        omit_expo <- c(omit_expo, i)
      } else x[,i] <- tmp_trans
    }
    if(length(omit_expo) > 0) {
      warning(paste("Expo. transform induced infinite values",
                    "in several predictors and is ommitted:",
                    paste(omit_expo, sep = "", collapse = ", ")),
              immediate. = TRUE)
      et <- et[!(names(et) %in% omit_expo)]
    }
  } else et <- NULL
  if(any(names(method)  %in% c("center"))) {
    if(verbose) cat("Calculating", length(method$center), "means for centering\n")
    centerValue <- apply(x[, method$center, drop = FALSE], 2, mean, na.rm = na.remove)
    x[, method$center] <- sweep(x[, method$center, drop = FALSE], 2, centerValue, "-")
  } else centerValue <- NULL

  if(any(names(method) %in% c("scale"))) {
    if(verbose) cat("Calculating", length(method$scale), "standard deviations for scaling\n")
    scaleValue <- apply(x[, method$scale, drop = FALSE], 2, sd, na.rm = na.remove)
    if(any(is.na(scaleValue))){
      wrn <- paste("Std. deviations could not be computed for:",
                   paste(names(scaleValue)[which(is.na(scaleValue))],collapse = ", "))
      warning(wrn, immediate. = TRUE)
      scaleValue[which(is.na(scaleValue))] <- 1
    }

    if(any(scaleValue == 0)){
      wrn <- paste("These variables have zero variances:",
                   paste(names(scaleValue)[which(scaleValue == 0)], collapse = ", "))
      warning(wrn, immediate. = TRUE)
      scaleValue[which(scaleValue == 0)] <- 1
    }
    x[, method$scale] <- sweep(x[, method$scale, drop = FALSE], 2, scaleValue, "/")
  } else scaleValue <- NULL

  if(any(names(method) == "range")) {
    if(verbose) cat("Calculating", length(method$range), "statistcs for scaling to a range\n")
    ## check rangeBounds consistency
    if(!is.numeric(rangeBounds) || length(rangeBounds) != 2)
      stop("'rangeBounds' should be a two-element numeric vector")
    if(rangeBounds[1] >= rangeBounds[2])
      stop("'rangeBounds' interval is empty")

    ranges <- apply(x[, method$range, drop = FALSE],
                    2,
                    function(x) c(min(x, na.rm = na.remove),
                                  max(x, na.rm = na.remove)))
    ## check for zero variance
    is_same <- apply(ranges, 2, function(x) x[1] == x[2])
    if(any(is_same)) {
      wrn <- paste("No variation for for:",paste(names(is_same)[is_same],collapse = ", "))
      warning(wrn,immediate. = TRUE)
      ranges <- ranges[, !is_same, drop = FALSE]
      method$range <- method$range[!(method$range %in% names(is_same)[is_same])]
    }
    x[, method$range] <- sweep(x[, method$range, drop = FALSE], 2, ranges[1,], "-")
    x[, method$range] <- sweep(x[, method$range, drop = FALSE], 2,
                               (ranges[2,] - ranges[1,]) / (rangeBounds[2] - rangeBounds[1]), "/")
    x[, method$range] <- sweep(x[, method$range, drop = FALSE], 2, rangeBounds[1], "+")
  } else ranges <- NULL

  if(any(names(method) == "bagImpute")){
    if(verbose) cat("Computing bagging models for", length(method$bagImpute), "predictors...")
    bagModels <- as.list(method$bagImpute)
    names(bagModels) <- method$bagImpute
    bagModels <- lapply(bagModels, bagImp, x = x)
    if(verbose) cat(" done\n")
  } else bagModels <- NULL

  if (any(names(method) == "medianImpute")) {
    if(verbose)
      cat("Computing medians for",
          length(method$medianImpute), "predictors...")
    medianValue <- apply(x[, method$medianImpute, drop = FALSE],
                         2, median, na.rm=TRUE)

    if (any(is.na(medianValue))) {
      warning(
        paste(
          "These variables are never filled:",
          paste(names(medianValue)[is.na(medianValue)], collapse = ", ")),
        immediate. = TRUE)
      medianValue[is.na(medianValue)] <- 0
    }
    if(verbose) cat(" done\n")
  } else medianValue <- NULL

  ## TODO This should be moved inside of pca or ica code
  ## and done after centering and scaling
  x <- x[complete.cases(x),,drop = FALSE]

  if(any(names(method) == "pca")) {
    if(verbose)
      cat("Computing PCA loadings for",
          length(method$pca),
          "predictors\n")
    tmp <- prcomp(x[, method$pca, drop = FALSE], scale = TRUE, retx = FALSE)
    if(is.null(pcaComp)) {
      cumVar <- cumsum(tmp$sdev^2/sum(tmp$sdev^2))
      aboveThresh <- cumVar >= thresh
      if (!any(aboveThresh)) {
        numComp <- length(aboveThresh)
      } else {
        numComp <- max(2, which.max(aboveThresh))
      }
    } else numComp <- min(pcaComp, ncol(tmp$rotation))
    rot <- tmp$rotation[,1:numComp]
  } else {
    rot <- NULL
    numComp <- NULL
  }

  if(any(names(method) == "ica")) {
    ## TODO What if range is used?
    if(verbose)
      cat("Computing ICA loadings for",
          length(method$ica),
          "predictors\n")
    requireNamespaceQuietStop("fastICA")
    tmp <- fastICA::fastICA(x[, method$ica, drop = FALSE], ...)
    ica <- list(row.norm = row.norm,
                K = tmp$K,
                W = tmp$W)
  } else {
    ica <- NULL
  }

  out <- list(dim = c(nrow(x), length(unique(unlist(method)))),
              bc = bc,
              yj = yj,
              et = et,
              invHyperbolicSine = method$invHyperbolicSine,
              mean = centerValue,
              std = scaleValue,
              ranges = ranges,
              rotation = rot,
              method = method,
              thresh = thresh,
              pcaComp = pcaComp,
              numComp = numComp,
              ica = ica,
              wildcards = wildcards,
              k = k,
              knnSummary = knnSummary,
              bagImp = bagModels,
              median = medianValue,
              data = if(any(names(method) == "knnImpute"))
                x[complete.cases(x),method$knnImpute,drop = FALSE] else NULL,
              rangeBounds = rangeBounds)
  out <- structure(out, class = "preProcess")
  out
}

#' @rdname preProcess
#' @importFrom stats complete.cases
#' @export
predict.preProcess <- function(object, newdata, ...) {
  if(is.vector(object$method) & !is.list(object$method))
    object <- convert_method(object)

  dataNames <- colnames(newdata)
  oldClass <- class(newdata)

  if(!is.null(object$method$remove)) {
    if(length(object$method$remove) > 0)
      newdata <- newdata[, !(colnames(newdata) %in% object$method$remove), drop = FALSE]
    if(ncol(newdata) == 0)
      stop("All predctors were removed as determined by `preProcess`")
  }

  if(!is.null(object$invHyperbolicSine)) {
    for(i in object$invHyperbolicSine) {
      newdata[,i] <- invHyperbolicSineFunc(newdata[,i])
    }
  }

  if(!is.null(object$bc)) {
    lam <- unlist(lapply(object$bc, function(x) x$lambda))
    lamIndex <- which(!is.na(lam))
    if(length(lamIndex) > 0) {
      for(i in names(lamIndex)) {
        tt <- newdata[,i]
        tt <- tt[!is.na(tt)]
        newdata[,i] <- predict(object$bc[[i]], newdata[,i])
      }
    }
  }

  if(!is.null(object$yj)) {
    lam <- get_yj_lambda(object$yj)
    lam <- lam[!is.na(lam)]
    if(length(lam) > 0) {
      for(i in seq(along.with = lam)) {
        who <- names(lam)[i]
        newdata[,who] <- recipes::yj_transform(newdata[,who], lam[who])
      }
    }
  }

  if(!is.null(object$et)) {
    for(i in seq(along.with = object$et)) {
      who <-  names(object$et)[i]
      newdata[,who] <- predict(object$et[[who]], newdata[,who])
    }
  }

  if(any(names(object$method) == "range")) {
    rangeBounds <- getRangeBounds(object)
    newdata[, object$method$range] <-
      sweep(newdata[, object$method$range, drop = FALSE], 2,
            object$ranges[1,], "-")
    newdata[, object$method$range] <-
      sweep(newdata[, object$method$range, drop = FALSE], 2,
            (object$ranges[2,] - object$ranges[1,]) /
              (rangeBounds$upper - rangeBounds$lower), "/")
    newdata[, object$method$range] <-
      sweep(newdata[, object$method$range, drop = FALSE], 2,
            rangeBounds$lower, "+")
  }

  if(any(names(object$method) == "center"))
    newdata[, object$method$center] <-
    sweep(newdata[, object$method$center, drop = FALSE], 2, object$mean, "-")
  if(any(names(object$method) %in% c("scale")))
    newdata[, object$method$scale] <-
    sweep(newdata[, object$method$scale, drop = FALSE], 2, object$std, "/")

  cc <- complete.cases(newdata)
  if(any(names(object$method) == "knnImpute") && any(!cc))  {
    hasMiss <- newdata[!cc,object$method$knnImpute,drop = FALSE]
    miss_names <- colnames(hasMiss)
    hasMiss <- apply(hasMiss,
                     1,
                     nnimp,
                     ## todo: should prob us all vars in the next line
                     old = object$data[, object$method$knnImpute, drop = FALSE],
                     k = object$k,
                     foo = object$knnSummary)
    hasMiss <- t(hasMiss)
    colnames(hasMiss) <- miss_names
    if(class(newdata)[1] == class(hasMiss)[1]) {
      newdata[!cc, object$method$knnImpute] <- hasMiss
    } else {
      if(is.data.frame(newdata)) {
        newdata[!cc, object$method$knnImpute] <- as.data.frame(hasMiss, stringsAsFactors = TRUE)
      } else newdata[!cc, object$method$knnImpute] <- as.matrix(hasMiss)
    }
  }

  if(any(names(object$method) == "bagImpute") && any(!cc)) {
    requireNamespaceQuietStop("ipred")
    hasMiss <- newdata[!cc,,drop = FALSE]
    missingVars <- apply(hasMiss,
                         2,
                         function(x) any(is.na(x)))
    missingVars <- names(missingVars)[missingVars]
    ## ipred's bagging procedure only allows for data frames
    if(!is.data.frame(hasMiss)) hasMiss <- as.data.frame(hasMiss, stringsAsFactors = TRUE)
    for(i in seq(along.with = missingVars)) {
      preds <- predict(object$bagImp[[missingVars[i]]]$model,
                       hasMiss[, !colnames(hasMiss) %in% missingVars[i], drop = FALSE])

      hasMiss[is.na(hasMiss[,missingVars[i]]),
              missingVars[i]] <- preds[is.na(hasMiss[,missingVars[i]])]
    }
    if(class(newdata)[1] == class(hasMiss)[1]) {
      newdata[!cc,] <- hasMiss
    } else {
      if(is.data.frame(newdata)) {
        newdata[!cc,] <- as.data.frame(hasMiss, stringsAsFactors = TRUE)
      } else newdata[!cc,] <- as.matrix(hasMiss)
    }
  }

  if (any(names(object$method) == "medianImpute") && any(!cc)) {
    missingVars <- apply(newdata, 2, function(x) any(is.na(x)))
    missingVars <- if(is.null(names(missingVars))) which(missingVars) else names(missingVars)[missingVars]
    for (v in missingVars) {
      newdata[is.na(newdata[, v]), v] <- object$median[v]
    }
  }

  if(any(names(object$method) == "pca")) {
    pca_cols <- newdata[, object$method$pca, drop = FALSE]
    pca_cols <-if(is.matrix(pca_cols)) pca_cols %*% object$rotation else as.matrix(pca_cols) %*% object$rotation
    if (ncol(pca_cols) == 1) {
      colnames(pca_cols) <- "PC1"
    }
    if(is.data.frame(newdata)) pca_cols <- as.data.frame(pca_cols, stringsAsFactors = TRUE)
    newdata <- cbind(newdata, pca_cols)
    ## normally we get rid of columns that we used to create
    ## the PC's unless we still need them or want them
    discard <- object$method$pca
    if(is.null(object$method$keep)) {
      ## after PCA/ICA comes SS so keep any of those
      discard <- discard[!(discard %in% object$method$spatialSign)]
    } else {
      discard <- discard[!(discard %in% object$method$keep)]
    }
    if(length(discard) > 0) newdata <- newdata[, !(colnames(newdata) %in% discard), drop = FALSE]
  }

  if(any(names(object$method) == "ica")) {
    ica_cols <- newdata[, object$method$ica, drop = FALSE]
    if(!is.matrix(ica_cols)) ica_cols <- as.matrix(ica_cols)
    ##if(object$ica$row.norm) newdata <- apply(newdata, 1, function(u) u/sd(u))
    ica_cols <- ica_cols %*% object$ica$K %*% object$ica$W
    colnames(ica_cols) <- paste("ICA", 1:ncol(object$ica$W), sep = "")
    if(is.data.frame(newdata)) ica_cols <- as.data.frame(ica_cols, stringsAsFactors = TRUE)
    newdata <- cbind(newdata, ica_cols)
    ## Same as PCA above
    discard <- object$method$ica
    if(is.null(object$method$keep)) {
      ## after PCA/ICA comes SS so keep any of those
      discard <- discard[!(discard %in% object$method$spatialSign)]
    } else {
      discard <- discard[!(discard %in% object$method$keep)]
    }
    if(length(discard) > 0) newdata <- newdata[, !(colnames(newdata) %in% discard), drop = FALSE]
  }

  wc <- object$wildcards
  if(any(names(object$method) == "spatialSign") |
     any(wc$PCA == "spatialSign") |
     any(wc$ICA == "spatialSign")){
    ss_col_names <- object$method$spatialSign
    ## adjust for PCA/ICA column wildcards
    if(length(wc$PCA) > 0 && any(wc$PCA == "spatialSign"))
      ss_col_names <- c(ss_col_names, colnames(pca_cols))
    if(length(wc$ICA) > 0 && any(wc$ICA == "spatialSign"))
      ss_col_names <- c(ss_col_names, colnames(ica_cols))

    newdata[, ss_col_names] <- spatialSign(newdata[, ss_col_names, drop = FALSE])
  }

  newdata
}

#' @export
print.preProcess <- function(x, ...) {
  #   printCall(x$call)
  cat("Created from", x$dim[1], "samples and", x$dim[2], "variables\n\n")


  pp_num <- unlist(lapply(x$method, length))
  if(any(unlist(x$wildcards) == "spatialSign")) {
    if(any(x$wildcards$PCA == "spatialSign"))
      pp_num["spatialSign"] <- pp_num["spatialSign"] + x$pcaComp
    if(any(x$wildcards$ICA == "spatialSign"))
      pp_num["spatialSign"] <- pp_num["spatialSign"] + x$numComp
  }
  pp <- paste0("  - ", names(x$method), " (", pp_num, ")\n")
  pp <- pp[order(pp)]
  pp <- gsub("invHyperbolicSine", "Inverve Hyperbolic Sine transformation", pp)
  pp <- gsub("BoxCox", "Box-Cox transformation", pp)
  pp <- gsub("YeoJohnson", "Yeo-Johnson transformation", pp)
  pp <- gsub("expoTrans", "exponential transformation", pp)
  pp <- gsub("scale", "scaled", pp)
  pp <- gsub("center", "centered", pp)
  pp <- gsub("pca", "principal component signal extraction", pp)
  pp <- gsub("ica", "independent component signal extraction", pp)
  pp <- gsub("spatialSign", "spatial sign transformation", pp)
  pp <- gsub("knnImpute", paste(x$k, "nearest neighbor imputation"), pp)
  pp <- gsub("bagImpute", "bagged tree imputation", pp)
  pp <- gsub("medianImpute", "median imputation", pp)

  rangeBounds <- getRangeBounds(x)
  pp <- gsub("range", paste0("re-scaling to [", rangeBounds$lower, ", ", rangeBounds$upper, "]"), pp)

  pp <- gsub("remove", "removed", pp)
  pp <- gsub("ignore", "ignored", pp)

  cat("Pre-processing:\n")
  cat(pp, sep = "")
  cat("\n")

  if(any(names(x$method) == "BoxCox")) {
    cat("Lambda estimates for Box-Cox transformation:\n")
    if(length(x$bc) < 11) {
      lmbda <- unlist(lapply(x$bc, function(x) x$lambda))
      naLmbda <- sum(is.na(lmbda))
      cat(paste(round(lmbda[!is.na(lmbda)], 2), collapse = ", "))
      if(naLmbda > 0) cat(" (#NA: ", naLmbda, ")\n", sep = "")
    } else print(summary(unlist(lapply(x$bc, function(x) x$lambda))))
    cat("\n")
  }

  if(any(names(x$method) == "YeoJohnson")) {
    cat("Lambda estimates for Yeo-Johnson transformation:\n")
    lmbda <- get_yj_lambda(x$yj)
    if(length(lmbda) < 11) {
      naLmbda <- sum(is.na(lmbda))
      cat(paste(round(lmbda[!is.na(lmbda)], 2), collapse = ", "))
      if(naLmbda > 0) cat(" (#NA: ", naLmbda, ")\n", sep = "")
    } else print(summary(lmbda))
    cat("\n")
  }

  if(any(names(x$method) == "pca")) {
    if(is.null(x$pcaComp)) {
      cat("PCA needed", x$numComp, ifelse(x$numComp > 1, "components", "component"),
          "to capture", round(x$thresh*100, 2),
          "percent of the variance")
    } else {
      cat("PCA used", x$pcaComp, ifelse(x$pcaComp > 1, "components", "component"), "as specified")
    }
    if(length(x$wildcards$PCA) > 0)
      cat(" and will be used in the spatial sign transformation")
    cat("\n")
  }

  if(any(names(x$method) == "ica")) {
    cat("ICA used", ncol(x$ica$W), "components")
    if(length(x$wildcards$ICA) > 0)
      cat(" and will be used in the spatial sign transformation")
    cat("\n")
  }
}

nnimp <- function(new, old, k, foo) {
  requireNamespaceQuietStop("RANN")
  if(all(is.na(new)))
    stop("cannot impute when all predictors are missing in the new data point")
  nms <- names(new)
  cols2 <- which(!is.na(new))
  new <- matrix(new, ncol = length(new))
  colnames(new) <- nms
  non_missing_cols <- cols2
  nn <- RANN::nn2(old[, non_missing_cols, drop = FALSE],
                  new[, non_missing_cols, drop = FALSE],
                  k = k)
  tmp <- old[nn$nn.idx, -non_missing_cols, drop = FALSE]
  subs <- apply(tmp, 2, foo, na.rm = TRUE)
  new[, -non_missing_cols] <- subs
  new
}

#' @importFrom stats as.formula
bagImp <- function(var, x, B = 10) {
  requireNamespaceQuietStop("ipred")
  ## The formula interface is much slower than the
  ## (y, X) interface, but the latter would have to
  ## do case-wise deletion of samples from the
  ## training set.
  if(!is.data.frame(x)) x <- as.data.frame(x, stringsAsFactors = TRUE)
  mod <- ipred::bagging(as.formula(paste(var, "~.")),
                        data = x,
                        nbagg = B,
                        x = FALSE,
                        keepX = FALSE)
  trim_code <- getModelInfo("treebag", FALSE)[[1]]$trim
  list(var = var,
       model = trim_code(mod))
}


## Add checks for zv and nzv and overlap
## allow categorical variables in zv, nzv, and bagImpute

pre_process_options <- function(opts, vars) {
  orig_vars <- vars
  vars <- vars %in% c("integer", "numeric", "double")
  names(vars) <- names(orig_vars)
  ## convert simple vectors to list mode:
  if(is.vector(opts) & !is.list(opts)) {
    op_list <- vector(mode = "list", length = length(opts))
    names(op_list) <- opts
    op_list <- lapply(op_list,
                      function(x, y) {
                        x <- y
                        x
                      }, y = names(vars))
    opts <- op_list
  }

  ## check names of options
  if(!all(names(opts) %in% ppMethods)) {
    others <- names(opts)[!(names(opts) %in% ppMethods)]
    stop((paste("These pre-processing methods are unknown:",
                paste("'", others, "'", sep = "", collapse = ", "))))
  }

  methods <- names(opts)

  ## find and store any PCA/ICA wildcards
  tmp <- check_for_wildcards(opts, verbose = FALSE)
  opts <- tmp$opts
  wildcards <- tmp$wildcards

  ## check that each predictor is in the data
  all_op_vars <- unique(unlist(opts))
  if(!all(all_op_vars %in% names(vars))) {
    others <- all_op_vars[!(all_op_vars %in% names(vars))]
    stop((paste("These fields are not in the data:",
                paste("'", others, "'", sep = "", collapse = ", "))))
  } ## get fancy and look for dummy variables and write sensible note?

  ## check to make sure calcs are on numbers
  num_vars <- names(vars)[vars]
  not_num <- NULL
  for(i in ppMethods) {
    if(i %in% methods) {
      is_num <- opts[[i]] %in% num_vars
      if(any(!is_num)){
        not_num <- c(not_num, opts[[i]][!is_num])
        opts[[i]] <- opts[[i]][is_num]
      }
    }
  }
  not_num <- unique(not_num)
  if(length(not_num) > 0) {
    opts$ignore <- unique(c(opts$ignore, not_num))
  }

  ## check for group trans on single predictors
  if("pca" %in% methods && length(opts[["pca"]]) == 1){
    warning(paste("PCA is a group transformation and only a single predictor",
                  "is listed. This method is eliminated."),
            immediate. = TRUE)
    opts[["pca"]] <- NULL
  }


  if("ica" %in% methods && length(opts[["ica"]]) == 1){
    warning(paste("ICA is a group transformation and only a single predictor",
                  "is listed. This method is eliminated."),
            immediate. = TRUE)
    opts[["ica"]] <- NULL
  }

  if(all(unlist(wildcards) != "spatialSign") &
     "spatialSign" %in% methods &
     length(opts[["spatialSign"]]) == 1 ){
    warning(paste("Spatial sign is a group transformation and only a single predictor",
                  "is listed. This method is eliminated."),
            immediate. = TRUE)
    opts[["spatialSign"]] <- NULL
  }

  methods <- names(opts)
  ## check for inconsistent options for each predictor
  if(all(c("pca", "ica") %in% methods)){
    pca_and_ica <- intersect(opts$pca, opts$ica)
    if(length(pca_and_ica) > 0) {
      warning(paste("fastICA automatically uncorrelates the data using PCA.",
                    "method = 'pca' is not needed for fields:",
                    paste("'", pca_and_ica, "'", sep = "", collapse = ", ")),
              immediate. = TRUE)
      opts[["pca"]] <- opts[["pca"]][!(opts[["pca"]] %in% pca_and_ica)]
    }
  }
  if(sum(c("knnImpute","bagImpute", "medianImpute") %in% methods) > 1) {
    imp_table <- table(unlist(opts[c("knnImpute","bagImpute", "medianImpute")]))
    if(any(imp_table > 1)) {
      dup_imps <- names(imp_table)[imp_table > 1]
      stop((paste("Please pick a single imputation method for:",
                  paste("'", dup_imps, "'", sep = "", collapse = ", "))))
    }
  }

  if(any(methods %in% "range") & any(methods %in% c("center", "scale", "BoxCox")))
    stop("Centering, scaling and/or Box-Cox transformations are inconsistent with scaling to a range")

  ## coerce certain options based on others
  if("pca" %in% methods) {
    if("range" %in% methods) {
      opts[["range"]] <- c(opts[["range"]], opts[["pca"]])
      opts[["range"]] <- c(opts[["range"]], opts[["pca"]])
    } else {
      opts[["center"]] <- c(opts[["center"]], opts[["pca"]])
      opts[["scale"]] <- c(opts[["scale"]], opts[["pca"]])
    }
  }
  if("ica" %in% methods) {
    if("range" %in% methods) {
      opts[["range"]] <- c(opts[["range"]], opts[["ica"]])
      opts[["range"]] <- c(opts[["range"]], opts[["ica"]])
    } else {
      opts[["center"]] <- c(opts[["center"]], opts[["ica"]])
      opts[["scale"]] <- c(opts[["scale"]], opts[["ica"]])
    }
  }
  if("spatialSign" %in% methods) {
    if("range" %in% methods) {
      opts[["range"]] <- c(opts[["range"]], opts[["spatialSign"]])
      opts[["range"]] <- c(opts[["range"]], opts[["spatialSign"]])
    } else {
      opts[["center"]] <- c(opts[["center"]], opts[["spatialSign"]])
      opts[["scale"]] <- c(opts[["scale"]], opts[["spatialSign"]])
    }
  }
  if("knnImpute" %in% methods) {
    if("range" %in% methods) {
      opts[["range"]] <- num_vars
    } else {
      opts[["center"]] <- num_vars
      opts[["scale"]] <- num_vars
    }
  }
  opts <- lapply(opts, unique)

  ## check length of options and remove zero lengths
  opt_len <- unlist(lapply(opts, length))
  if(opt_len["spatialSign"] == 0 & any(unlist(wildcards) == "spatialSign"))
    opt_len["spatialSign"] <- 1
  if(any(opt_len < 1)) {
    warning(paste("The following pre-processing methods were eliminated:",
                  paste("'", names(opts)[opt_len < 1], "'", sep = "", collapse = ", ")),
            immediate. = TRUE)
    opts <- opts[opt_len > 0]
  }

  ## add to 'ignore'
  not_num_vars <- names(vars)[!vars]
  if("ignore" %in% names(opts))
    opts$ignore <- unique(c(not_num_vars, opts$ignore)) else
      opts$ignore <- not_num_vars
  ## TODO make sure that, if a var is in 'ignore' that it is nowhere else (and remove?)

  list(opts = opts, wildcards = wildcards)
}


get_types <- function(x, coarse = TRUE) {
  if(is.null(colnames(x)))
    stop("`x` must have column names")
  if(is.matrix(x)) {
    out <- rep(class(x[1,1]), ncol(x))
  } else {
    if(is.data.frame(x)) {
      out <- unlist(lapply(x, function(x) class(x)[1]))
    }
  }

  if(coarse) {
    num_classes <- c("integer", "numeric", "double")
    str_classes <- c("factor", "character")
    out <- ifelse(out %in% num_classes, "numeric", out)
    out <- ifelse(out %in% str_classes, "string", out)
    out <- ifelse(out %in% c("numeric", "string"), out, "other")
  }
  names(out) <- colnames(x)
  out
}

check_for_wildcards <- function(opts, verbose = TRUE){
  other_methods <- ppMethods[!(ppMethods %in% "spatialSign")]
  pc_wc <- unlist(lapply(opts, function(x) any(x == "_PC_")))
  if(any(pc_wc)) {
    pc_wc <- names(pc_wc)[pc_wc]
    if(verbose) cat("PCA wildcards found for:",
                    paste(pc_wc, sep = "", collapse = ", "))
    if(any(pc_wc %in% other_methods)) {
      bad_ops <- pc_wc[pc_wc %in% other_methods]
      if(verbose) cat(" ...but should not be in methods:",
                      paste(bad_ops, sep = "", collapse = ", "))
      for(i in bad_ops) opts[[i]] <- opts[[i]][opts[[i]] != "_PC_"]
    }
    if(verbose) cat("\n")
  }
  ic_wc <- unlist(lapply(opts, function(x) any(x == "_IC_")))
  if(any(ic_wc)) {
    ic_wc <- names(ic_wc)[ic_wc]
    if(verbose) cat("ICA wildcards found for:",
                    paste(ic_wc, sep = "", collapse = ", "), "\n")
    if(any(ic_wc %in% other_methods)) {
      bad_ops <- ic_wc[ic_wc %in% other_methods]
      if(verbose) cat(" ...but should not be in methods:",
                      paste(bad_ops, sep = "", collapse = ", "))
      for(i in bad_ops) opts[[i]] <- opts[[i]][opts[[i]] != "_IC_"]
    }
    if(verbose) cat("\n")
  }

  pc_wc <- unlist(lapply(opts, function(x) any(x == "_PC_")))
  ic_wc <- unlist(lapply(opts, function(x) any(x == "_IC_")))
  wc_list <- list(PCA = names(pc_wc)[pc_wc],
                  ICA = names(ic_wc)[ic_wc])
  opts <- lapply(opts, function(x) x[!(x %in% c("_PC_", "_IC_"))])
  list(opts = opts, wildcards = wc_list)
}


group_bc <- function(x, outcome = NULL,
                     fudge,
                     na.remove,
                     numUnique,
                     verbose) {
  if(verbose) cat("Estimating Box-Cox transformations for",  ncol(x), "predictors...\n")
  if(is.matrix(x)) {
    bc <- apply(x, 2, BoxCoxTrans,
                fudge = fudge,
                na.rm = na.remove,
                numUnique = numUnique)
  } else {
    bc <- lapply(x, BoxCoxTrans,
                 fudge = fudge,
                 na.rm = na.remove,
                 numUnique = numUnique)
  }
  lambdas <- unlist(lapply(bc, function(x) x$lambda))
  if(any(is.na(lambdas))) {
    bad_lambda <- lambdas[is.na(lambdas)]
    bad_lambda <- names(bad_lambda)
    if(verbose) cat("Box-Cox failed for:",  paste(bad_lambda, sep = "", collapse = ", "))
    bc <- bc[!(names(bc) %in% bad_lambda)]
  }

  bc[!is.null(bc) & !is.na(bc)]
}

convert_method <- function(x) {
  new_method <- list()
  if("center" %in% x$method)       new_method$center       <- names(x$mean)
  if("scale" %in% x$method)        new_method$scale        <- names(x$std)
  if("YeoJohnson" %in% x$method)   new_method$YeoJohnson   <- names(x$yj)
  if("expoTrans" %in% x$method)    new_method$expoTrans    <- names(x$et)
  if("BoxCox" %in% x$method)       new_method$BoxCox       <- names(x$bc)
  if("knnImpute" %in% x$method)    new_method$knnImpute    <- names(x$mean)
  if("bagImpute" %in% x$method)    new_method$bagImpute    <- names(x$bagImp)
  if("medianImpute" %in% x$method) new_method$medianImpute <- names(x$median)
  if("pca" %in% x$method)          new_method$pca          <- names(x$mean)
  if("ica" %in% x$method)          new_method$ica          <- names(x$mean)
  if("spatialSign" %in% x$method)  new_method$spatialSign  <- names(x$mean)
  if("invHyperbolicSine" %in% x$method)  new_method$invHyperbolicSine  <- x$method$invHyperbolicSine
  x$method <- new_method
  x
}

## code for using car method; extract lambdas either way and use
## new code for predictions. Same for predict method
get_yj_lambda <- function(x) {
  if(inherits(x[[1]], "powerTransform")) {
    # backwards compat with old caret objecgts that used `car`
    res <- unlist(lapply(x, function(x) x$lambda))
    names(res) <- gsub("\\.Y1$", "", names(res))
  } else {
    res <- x
  }
  res[!is.na(res)]
}