1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#' @importFrom stats predict
#' @export
predict.list <- function(object, ...) {
out <- lapply(object, predict, ... = ...)
if(!is.null(names(object))) names(out) <- names(object)
out
}
#' Extract predictions and class probabilities from train objects
#'
#' These functions can be used for a single \code{train} object or to loop
#' through a number of \code{train} objects to calculate the training and test
#' data predictions and class probabilities.
#'
#' These functions are wrappers for the specific prediction functions in each
#' modeling package. In each case, the optimal tuning values given in the
#' \code{tuneValue} slot of the \code{finalModel} object are used to predict.
#'
#' To get simple predictions for a new data set, the \code{predict} function
#' can be used. Limits can be imposed on the range of predictions. See
#' \code{\link{trainControl}} for more information.
#'
#' To get predictions for a series of models at once, a list of
#' \code{\link{train}} objects can be passes to the \code{predict} function and
#' a list of model predictions will be returned.
#'
#' The two extraction functions can be used to get the predictions and observed
#' outcomes at once for the training, test and/or unknown samples at once in a
#' single data frame (instead of a list of just the predictions). These objects
#' can then be passes to \code{\link{plotObsVsPred}} or
#' \code{\link{plotClassProbs}}.
#'
#' @aliases predict.list predict.train extractPrediction extractProb
#' @param object For \code{predict.train}, an object of class
#' \code{\link{train}}. For \code{predict.list}, a list of objects of class
#' \code{\link{train}}.
#' @param newdata an optional set of data to predict on. If \code{NULL}, then
#' the original training data are used but, if the \code{train} model used a
#' recipe, an error will occur.
#' @param type either "raw" or "prob", for the number/class predictions or
#' class probabilities, respectively. Class probabilities are not available for
#' all classification models
#' @param models a list of objects of the class \code{train}. The objects must
#' have been generated with \code{fitBest = FALSE} and \code{returnData =
#' TRUE}.
#' @param na.action the method for handling missing data
#' @param testX an optional set of data to predict
#' @param testY an optional outcome corresponding to the data given in
#' \code{testX}
#' @param unkX another optional set of data to predict without known outcomes
#' @param unkOnly a logical to bypass training and test set predictions. This
#' is useful if speed is needed for unknown samples.
#' @param verbose a logical for printing messages
#' @param \dots only used for \code{sort} and \code{modelCor} and captures
#' arguments to pass to \code{sort} or \code{FUN}.
#' @return
#'
#' For \code{predict.train}, a vector of predictions if \code{type = "raw"} or
#' a data frame of class probabilities for \code{type = "prob"}. In the latter
#' case, there are columns for each class.
#'
#' For \code{predict.list}, a list results. Each element is produced by
#' \code{predict.train}.
#'
#' For \code{extractPrediction}, a data frame with columns: \item{obs }{the
#' observed training and test data} \item{pred }{predicted values}
#' \item{model}{the type of model used to predict} \item{object}{the names of
#' the objects within \code{models}. If \code{models} is an un-named list, the
#' values of \code{object} will be "Object1", "Object2" and so on}
#' \item{dataType }{"Training", "Test" or "Unknown" depending on what was
#' specified}
#'
#' For \code{extractProb}, a data frame. There is a column for each class
#' containing the probabilities. The remaining columns are the same as above
#' (although the \code{pred} column is the predicted class)
#' @author Max Kuhn
#' @seealso \code{\link{plotObsVsPred}}, \code{\link{plotClassProbs}},
#' \code{\link{trainControl}}
#' @references Kuhn (2008), ``Building Predictive Models in R Using the caret''
#' (\doi{10.18637/jss.v028.i05})
#' @keywords manip
#' @examples
#'
#' \dontrun{
#'
#' knnFit <- train(Species ~ ., data = iris, method = "knn",
#' trControl = trainControl(method = "cv"))
#'
#' rdaFit <- train(Species ~ ., data = iris, method = "rda",
#' trControl = trainControl(method = "cv"))
#'
#' predict(knnFit)
#' predict(knnFit, type = "prob")
#'
#' bothModels <- list(knn = knnFit,
#' tree = rdaFit)
#'
#' predict(bothModels)
#'
#' extractPrediction(bothModels, testX = iris[1:10, -5])
#' extractProb(bothModels, testX = iris[1:10, -5])
#' }
#'
#' @method predict train
#' @export predict.train
#' @export
predict.train <- function(object, newdata = NULL, type = "raw", na.action = na.omit, ...) {
if(all(names(object) != "modelInfo")) {
object <- update(object, param = NULL)
}
if(!is.null(object$modelInfo$library))
for(i in object$modelInfo$library)
do.call("requireNamespaceQuietStop", list(package = i))
if(!(type %in% c("raw", "prob"))) stop("type must be either \"raw\" or \"prob\"")
if(type == "prob") {
if (is.null(object$modelInfo$prob))
stop("only classification models that produce probabilities are allowed")
}
if(!is.null(newdata)) {
if (inherits(object, "train.formula")) {
newdata <- as.data.frame(newdata, stringsAsFactors = FALSE)
rn <- row.names(newdata)
Terms <- delete.response(object$terms)
m <- model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
if (!is.null(cl <- attr(Terms, "dataClasses")))
.checkMFClasses(cl, m)
keep <- match(row.names(m), rn)
newdata <- model.matrix(Terms, m, contrasts = object$contrasts)
xint <- match("(Intercept)", colnames(newdata), nomatch = 0)
if (xint > 0)
newdata <- newdata[, -xint, drop = FALSE]
}
}
else if(object$control$method != "oob") {
if(!is.null(object$trainingData)) {
if(object$method == "pam") {
newdata <- object$finalModel$xData
} else {
newdata <- object$trainingData
newdata$.outcome <- NULL
if("train.formula" %in% class(object) &&
any(unlist(lapply(newdata, is.factor)))) {
newdata <- model.matrix(~., data = newdata)[,-1]
newdata <- as.data.frame(newdata, stringsAsFactors = FALSE)
}
}
} else stop("please specify data via newdata")
}
if("xNames" %in% names(object$finalModel) &
is.null(object$preProcess$method$pca) &
is.null(object$preProcess$method$ica))
newdata <- newdata[, colnames(newdata) %in% object$finalModel$xNames, drop = FALSE]
if(type == "prob") {
out <- probFunction(method = object$modelInfo,
modelFit = object$finalModel,
newdata = newdata,
preProc = object$preProcess)
obsLevels <- levels(object)
out <- out[, obsLevels, drop = FALSE]
} else {
out <- predictionFunction(method = object$modelInfo,
modelFit = object$finalModel,
newdata = newdata,
preProc = object$preProcess)
if (object$modelType == "Regression") {
out <- trimPredictions(pred = out,
mod_type =object$modelType,
bounds = object$control$predictionBounds,
limits = object$yLimit)
} else {
if(!("levels" %in% names(object)))
object$levels <- levels(object)
out <- outcome_conversion(as.character(out), lv = object$levels)
}
}
out
}
|