1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
stringFunc <- function (x) {
if (!is.character(x)) x <- format(x)
numElements <- length(x)
out <- if (length(x) > 0) {
switch(min(numElements, 3), x, paste(x, collapse = " and "), {
x <- paste0(x, c(rep(",", numElements - 2), " and", ""))
paste(x, collapse = " ")
})
} else ""
out
}
#' Print Method for the train Class
#'
#' Print the results of a \code{\link{train}} object.
#'
#' The table of complexity parameters used, their resampled performance and a
#' flag for which rows are optimal.
#'
#' @param x an object of class \code{\link{train}}.
#' @param printCall a logical to print the call at the top of the output
#' @param details a logical to show print or summary methods for the final
#' model. In some cases (such as \code{gbm}, \code{knn}, \code{lvq}, naive
#' Bayes and bagged tree models), no information will be printed even if
#' \code{details = TRUE}
#' @param selectCol a logical whether to add a column with a star next to the
#' selected parameters
#' @param showSD a logical whether to show the standard deviation of the
#' resampling results within parentheses (e.g. "4.24 (0.493)")
#' @param \dots options passed to \code{\link[base]{format}}
#' @return A matrix with the complexity parameters and performance (invisibly).
#' @author Max Kuhn
#' @seealso \code{\link{train}}
#' @keywords print
#' @method print train
#' @export
#' @examples
#'
#' \dontrun{
#' data(iris)
#' TrainData <- iris[,1:4]
#' TrainClasses <- iris[,5]
#'
#' options(digits = 3)
#'
#' library(klaR)
#' rdaFit <- train(TrainData, TrainClasses, method = "rda",
#' control = trainControl(method = "cv"))
#' rdaFit
#' print(rdaFit, showSD = TRUE)
#' }
#'
#' @export print.train
"print.train" <-
function(x,
printCall = FALSE,
details = FALSE,
selectCol = FALSE,
showSD = FALSE,
...) {
if(!is.null(x$modelInfo$label)) cat(x$modelInfo$label, "\n\n")
if(printCall) printCall(x$call)
if(!is.null(x$trainingData)) {
chDim <- dim(x$trainingData)
chDim[2] <- chDim[2] - 1
if(x$modelType == "Classification") {
lev <- levels(x)
if(is.character(lev)) chDim <- c(chDim, length(lev))
} else lev <- NULL
chDim <- format(chDim)
cat(chDim[1], " samples", sep = "")
if(!is.null(x$control$indexFinal))
cat(",", length(x$control$indexFinal), "used for final model\n") else
cat("\n")
cat(chDim[2],
" predictor", ifelse(chDim[2] > 1, "s\n", "\n"),
sep = "")
if(is.character(lev)){
cat(chDim[3],
"classes:",
paste("'", lev, "'", sep = "", collapse = ", "),
"\n")
}
cat("\n")
}
if(!is.null(x$preProc)){
pp_list(x$preProc$method)
} else {
if(inherits(x, "train.recipe")) {
step_names <- function(x) gsub("^step_", "", class(x)[1])
steps_used <- unlist(lapply(x$recipe$steps, step_names))
ppText <- paste("Recipe steps:", paste(steps_used, collapse = ", "))
cat(truncateText(ppText), "\n")
} else cat("No pre-processing\n")
}
if(!is.null(x$control$index)) {
resampleN <- unlist(lapply(x$control$index, length))
numResamp <- length(resampleN)
resampText <- resampName(x)
cat("Resampling:", resampText, "\n")
if(x$control$method != "none") {
outLabel <- x$metric
resampleN <- as.character(resampleN)
if(numResamp > 5) resampleN <- c(resampleN[1:6], "...")
cat("Summary of sample sizes:", paste(resampleN, collapse = ", "), "\n")
}
}
if(!is.null(x$control$sampling)) {
cat("Addtional sampling using ")
cat(switch(x$control$sampling$name,
down = "down-sampling",
up = "up-sampling",
smote = "SMOTE",
rose = "ROSE",
custom = "a custom function"))
if(!is.null(x$preProc)) {
if(x$control$sampling$first)
cat(" prior to pre-processing") else
cat(" after to pre-processing")
}
cat("\n\n")
}
if(x$control$method != "none") {
tuneAcc <- x$results
tuneAcc <- tuneAcc[, names(tuneAcc) != "parameter"]
cat("Resampling results")
if(dim(tuneAcc)[1] > 1) cat(" across tuning parameters")
if(showSD) cat(" (values below are 'mean (sd)')")
cat(":\n\n")
if(dim(tuneAcc)[1] > 1) {
numParam <- length(x$bestTune)
finalTune <- x$bestTune
optValues <- paste(names(finalTune), "=", format(finalTune, ...))
optString <- paste0("The final ",
ifelse(numParam > 1, "values", "value"),
" used for the model ",
ifelse(numParam > 1, "were ", "was "),
stringFunc(optValues),
".")
finalTune$Selected <- "*"
## See https://stat.ethz.ch/pipermail/r-help/2016-July/440230.html
if(any(names(tuneAcc) %in% "method"))
names(tuneAcc)[names(tuneAcc) %in% "method"] <- ".method"
if(any(names(finalTune) %in% "method"))
names(finalTune)[names(finalTune) %in% "method"] <- ".method"
tuneAcc <- merge(tuneAcc, finalTune, all.x = TRUE)
if(any(names(tuneAcc) %in% ".method"))
names(tuneAcc)[names(tuneAcc) %in% ".method"] <- "method"
tuneAcc$Selected[is.na(tuneAcc$Selected)] <- ""
} else optString <- ""
sdCols <- grep("SD$", colnames(tuneAcc))
if(showSD) {
sdCheck <- unlist(lapply(tuneAcc[, sdCols, drop = FALSE],
function(u) all(is.na(u))))
if(any(sdCheck)) {
rmCols <- names(sdCheck)[sdCheck]
tuneAcc <- tuneAcc[, !(names(tuneAcc) %in% rmCols)]
}
} else {
if(length(sdCols) > 0) tuneAcc <- tuneAcc[, -sdCols, drop = FALSE]
}
params <- names(x$bestTune)
if(!all(params == "parameter")){
numVals <- apply(tuneAcc[, params, drop = FALSE], 2, function(x) length(unique(x)))
if(any(numVals < 2)) {
constString <- NULL
for(i in seq(along.with = numVals)) {
if(numVals[i] == 1)
constString <- c(constString,
paste0("Tuning parameter '",
names(numVals)[i],
"' was held constant at a value of ",
stringFunc(tuneAcc[1,names(numVals)[i]])))
}
discard <- names(numVals)[which(numVals == 1)]
tuneAcc <- tuneAcc[, !(names(tuneAcc) %in% discard), drop = FALSE]
} else constString <- NULL
} else constString <- NULL
tuneAcc <- tuneAcc[,!grepl("Apparent$|Optimism$", names(tuneAcc)), drop = FALSE]
colnames(tuneAcc)[colnames(tuneAcc) == ".B"] <- "Resamples"
nms <- names(tuneAcc)[names(tuneAcc) %in% params]
sort_args <- vector(mode = "list", length = length(nms))
for(i in seq(along.with = nms)) {
sort_args[[i]] <- tuneAcc[, nms[i]]
}
tune_ord <- do.call("order", sort_args)
if(!is.null(tune_ord)) tuneAcc <- tuneAcc[tune_ord,,drop = FALSE]
theDots <- list(...)
theDots$x <- tuneAcc
# if(!(any(names(theDots) == "digits"))) theDots$digits <- min(3, getOption("digits"))
printMat <- do.call("format.data.frame", theDots)
printMat <- as.matrix(printMat)
rownames(printMat) <- rep("", dim(printMat)[1])
if(showSD){
sdCols <- grep("SD$", colnames(printMat), value = TRUE)
sd_dat <- printMat[, sdCols, drop = FALSE]
printMat <- printMat[, !(colnames(printMat) %in% sdCols), drop = FALSE]
for(col_name in sdCols) {
not_sd <- gsub("SD$", "", col_name)
if(any(colnames(printMat) == not_sd)) {
printMat[, not_sd] <- paste0(printMat[, not_sd], " (",
sd_dat[, col_name], ")")
}
}
}
if(!selectCol) printMat <- printMat[, colnames(printMat) != "Selected", drop = FALSE]
print(printMat, quote = FALSE, print.gap = 2)
cat("\n")
if(!is.null(constString)){
cat(truncateText(paste(constString, collapse = "\n")))
cat("\n")
}
if(dim(tuneAcc)[1] > 1) {
if(is.null(x$update)) {
met <- paste(x$metric, "was used to select the optimal model using")
if(is.function(x$control$selectionFunction)) {
met <- paste(met, " a custom selection rule.\n")
} else {
met <- paste(met,
switch(x$control$selectionFunction,
best = paste(
"the",
ifelse(x$maximize, "largest", "smallest"),
"value.\n"),
oneSE = " the one SE rule.\n",
tolerance = " a tolerance rule.\n"))
}
} else {
met <- paste("The tuning", ifelse(ncol(x$bestTune) > 1, "parameters", "parameter"),
"was set manually.\n")
}
cat(truncateText(met))
}
cat(truncateText(optString))
if(nzchar(optString)) cat("\n")
} else printMat <- NULL
if(details) {
if(!(x$method %in% c("gbm", "treebag", "nb", "lvq", "knn"))) {
cat("\n----------------------------------------------------------\n")
cat("\nThe final model:\n\n")
switch(x$method,
lm =, nnet =, multinom =, pls =, earth =,
lmStepAIC =,
bagEarth =, bagFDA = print(summary(x$finalModel)),
rpart =, ctree =, ctree2=, cforest =,
glmboost =, gamboost =, blackboost =,
ada =, randomForest =, pcaNNet =,
svmradial =, svmpoly =,
svmRadial =, svmPoly =,
rvmRadial =, rvmPoly =,
lssvmRadial =, lssvmPoly =,
gaussprRadial =, gaussprPoly =,
enet =, lasso =, LMT =, JRip =,
lda =, rda =, pamr =, gpls =, J48 =,
ppr = print(x$finalModel),
fda = {
print(x$finalModel)
cat("\n Summary of Terms\n\n")
print(x$finalModel$fit)
})
}
}
invisible(printMat)
}
truncateText <- function(x){
if(length(x) > 1) x <- paste(x, collapse = "")
w <- options("width")$width
if(nchar(x) <= w) return(x)
cont <- TRUE
out <- x
while(cont){
tmp <- out[length(out)]
tmp2 <- substring(tmp, 1, w)
spaceIndex <- gregexpr("[[:space:]]", tmp2)[[1]]
stopIndex <- spaceIndex[length(spaceIndex) - 1] - 1
tmp <- c(substring(tmp2, 1, stopIndex),
substring(tmp, stopIndex + 1))
out <- if(length(out) == 1) tmp else c(out[1:(length(x)-1)], tmp)
if(all(nchar(out) <= w)) cont <- FALSE
}
paste(out, collapse = "\n")
}
pp_list <- function(x) {
if(is.list(x)) {
pp <- unlist(lapply(x, length))
pp <- pp[pp > 0]
if(length(pp) > 0) {
names(pp) <- gsub("BoxCox", "Box-Cox transformation", names(pp))
names(pp) <- gsub("YeoJohnson", "Yeo-Johnson transformation", names(pp))
names(pp) <- gsub("expoTrans", "exponential transformation", names(pp))
names(pp) <- gsub("scale", "scaled", names(pp))
names(pp) <- gsub("center", "centered", names(pp))
names(pp) <- gsub("pca", "principal component signal extraction", names(pp))
names(pp) <- gsub("ica", "independent component signal extraction", names(pp))
names(pp) <- gsub("spatialSign", "spatial sign transformation", names(pp))
names(pp) <- gsub("knnImpute", "nearest neighbor imputation", names(pp))
names(pp) <- gsub("bagImpute", "bagged tree imputation", names(pp))
names(pp) <- gsub("medianImpute", "median imputation", names(pp))
names(pp) <- gsub("range", "re-scaling to [0, 1]", names(pp))
} else pp <- "None"
ppText <- paste("Pre-processing:", paste0(names(pp), " (", pp, ")", collapse = ", "))
cat(truncateText(ppText), "\n")
} else {
pp <- x
pp <- gsub("BoxCox", "Box-Cox transformation", pp)
pp <- gsub("YeoJohnson", "Yeo-Johnson transformation", pp)
pp <- gsub("expoTrans", "exponential transformation", pp)
pp <- gsub("scale", "scaled", pp)
pp <- gsub("center", "centered", pp)
pp <- gsub("pca", "principal component signal extraction", pp)
pp <- gsub("ica", "independent component signal extraction", pp)
pp <- gsub("spatialSign", "spatial sign transformation", pp)
pp <- gsub("knnImpute", "nearest neighbor imputation", pp)
pp <- gsub("bagImpute", "bagged tree imputation", pp)
pp <- gsub("medianImpute", "median imputation", pp)
pp <- gsub("range", "re-scaling to [0, 1]", pp)
if(length(pp) == 0) pp <- "None"
ppText <- paste("Pre-processing:", paste(pp, collapse = ", "))
cat(truncateText(ppText), "\n")
}
invisible(NULL)
}
|