File: splsda.R

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (150 lines) | stat: -rw-r--r-- 4,207 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#' @export
splsda <- function (x, ...)
  UseMethod("splsda")

#' @importFrom stats predict
#' @export
predict.splsda <- function(object, newdata = NULL, type = "class", ...)
{
  requireNamespaceQuietStop("spls")
  tmpPred <- spls::predict.spls(object, newx = newdata)

  if(type == "raw") return(tmpPred)

  if(is.null(object$probModel))
    {
      ## use softmax
      out <- switch(type,

             class =
             {
               classIndex <- object$obsLevels[apply(tmpPred, 1, which.max)]
               factor(classIndex, levels = object$obsLevels)
             },
             prob = t(apply(tmpPred, 1, function(data) exp(data)/sum(exp(data)))))
    } else {
      requireNamespaceQuietStop("klaR")
      ## Bayes rule
      tmpPred <-  as.data.frame(tmpPred[,-length(object$obsLevels)], stringsAsFactors = TRUE)
      pred <- predict(object$probModel, tmpPred)
      out <- switch(type, class = pred$class, prob = pred$posterior)

    }
  out
}

#' @importFrom stats predict
#' @export
splsda.default <- function(x, y, probMethod = "softmax", prior = NULL, ...)
{
  requireNamespaceQuietStop("spls")
  funcCall <- match.call(expand.dots = TRUE)

  if(probMethod == "softmax")
    {
      if(!is.null(prior)) warning("Priors are ignored unless probMethod = \"Bayes\"")
    }

  if(is.factor(y))
    {
      obsLevels <- levels(y)
      oldY <- y
      y <- class2ind(y)
    } else {
      if(is.matrix(y))
        {
          test <- apply(y, 1, sum)
          if(any(test != 1)) stop("the rows of y must be 0/1 and sum to 1")
          obsLevels <- colnames(y)
          if(is.null(obsLevels)) stop("the y matrix must have column names")
          oldY <- obsLevels[apply(y, 1, which.max)]
        } else stop("y must be a matrix or a factor")
    }

  if(!is.matrix(x)) x <- as.matrix(x)

  tmpData <- data.frame(n = paste("row", 1:nrow(y), sep = ""))
  tmpData$y <- y
  tmpData$x <- x

  out <- spls::spls(x, y, ...)

  out$obsLevels <- obsLevels
  out$probMethod <- probMethod
  if(probMethod == "Bayes")
    {

      requireNamespaceQuietStop("klaR")
      makeModels <- function(x, y, pri)
        {
          probModel <- klaR::NaiveBayes(x, y, prior = pri, usekernel = TRUE)
          probModel$train <- predict(probModel)$posterior
          probModel$x <- NULL
          probModel
        }
      train <- predict(out, as.matrix(tmpData$x))
      ## Get the raw model predictions, but leave one behind since the
      ## final class probs sum to one
      train <- train[, -length(obsLevels), drop = FALSE]

      out$probModel <- makeModels(train, oldY, pri = prior)
    } else out$probModel <- NULL

  ##out$call <- funcCall
  class(out) <- "splsda"
  out
}

#' @export
print.splsda <- function (x, ...)
{
    xmat <- x$x
    p <- ncol(xmat)
    A <- x$A
    xAnames <- colnames(xmat)[A]
    q <- ncol(x$y)
    eta <- x$eta
    K <- x$K
    kappa <- x$kappa
    select <- x$select
    fit <- x$fit
    if (q == 1) {
        cat("\nSparse Partial Least Squares for discriminant analysis\n")
        cat("----\n")
        cat(paste("Parameters: eta = ", eta, ", K = ", K, "\n",
            sep = ""))
    }
    if (q > 1) {
        cat("\nSparse Partial Least Squares for discriminant analysis\n")
        cat("----\n")
        cat(paste("Parameters: eta = ", eta, ", K = ", K, ", kappa = ",
            kappa, "\n", sep = ""))
    }
    cat(paste("PLS algorithm:\n", select, " for variable selection, ",
        fit, " for model fitting\n", sep = ""))

    switch(x$probMethod,
           softmax = cat("The softmax function was used to compute class probabilities.\n"),
           Bayes = cat("Bayes rule was used to compute class probabilities.\n"))

    cat(paste("\nSPLS chose ", length(A), " variables among ",
        p, " variables\n\n", sep = ""))
    cat("Selected variables: \n")
    if (!is.null(xAnames)) {
        for (i in 1:length(A)) {
            cat(paste(xAnames[i], "\t", sep = ""))
            if (i%%5 == 0) {
                cat("\n")
            }
        }
    }
    else {
        for (i in 1:length(A)) {
            cat(paste(A[i], "\t", sep = ""))
            if (i%%5 == 0) {
                cat("\n")
            }
        }
    }
    cat("\n")
}