1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
|
#' Fit Predictive Models over Different Tuning Parameters
#'
#' This function sets up a grid of tuning parameters for a number
#' of classification and regression routines, fits each model and
#' calculates a resampling based performance measure.
#'
#' \code{train} can be used to tune models by picking the
#' complexity parameters that are associated with the optimal
#' resampling statistics. For particular model, a grid of
#' parameters (if any) is created and the model is trained on
#' slightly different data for each candidate combination of tuning
#' parameters. Across each data set, the performance of held-out
#' samples is calculated and the mean and standard deviation is
#' summarized for each combination. The combination with the
#' optimal resampling statistic is chosen as the final model and
#' the entire training set is used to fit a final model.
#'
#' The predictors in \code{x} can be most any object as long as
#' the underlying model fit function can deal with the object
#' class. The function was designed to work with simple matrices
#' and data frame inputs, so some functionality may not work (e.g.
#' pre-processing). When using string kernels, the vector of
#' character strings should be converted to a matrix with a single
#' column.
#'
#' More details on this function can be found at
#' \url{http://topepo.github.io/caret/model-training-and-tuning.html}.
#'
#' A variety of models are currently available and are enumerated
#' by tag (i.e. their model characteristics) at
#' \url{http://topepo.github.io/caret/train-models-by-tag.html}.
#'
#' More details on using recipes can be found at
#' \url{http://topepo.github.io/caret/using-recipes-with-train.html}.
#' Note that case weights can be passed into \code{train} using a
#' role of \code{"case weight"} for a single variable. Also, if
#' there are non-predictor columns that should be used when
#' determining the model's performance metrics, the role of
#' \code{"performance var"} can be used with multiple columns and
#' these will be made available during resampling to the
#' \code{summaryFunction} function.
#'
#' @aliases train train.default train.formula
#' @param x For the default method, \code{x} is an object where
#' samples are in rows and features are in columns. This could be a
#' simple matrix, data frame or other type (e.g. sparse matrix) but
#' must have column names (see Details below). Preprocessing using
#' the \code{preProcess} argument only supports matrices or data
#' frames. When using the recipe method, \code{x} should be an
#' unprepared [recipes::recipe()] object that describes the model
#' terms (i.e. outcome, predictors, etc.) as well as any
#' pre-processing that should be done to the data. This is an
#' alternative approach to specifying the model. Note that, when
#' using the recipe method, any arguments passed to \code{preProcess}
#' will be ignored. See the links and example below for more details
#' using recipes.
#' @param y A numeric or factor vector containing the outcome for
#' each sample.
#' @param form A formula of the form \code{y ~ x1 + x2 + ...}
#' @param data Data frame from which variables specified in
#' \code{formula} or \code{recipe} are preferentially to be taken.
#' @param weights A numeric vector of case weights. This argument
#' will only affect models that allow case weights.
#' @param subset An index vector specifying the cases to be used
#' in the training sample. (NOTE: If given, this argument must be
#' named.)
#' @param na.action A function to specify the action to be taken
#' if NAs are found. The default action is for the procedure to
#' fail. An alternative is \code{na.omit}, which leads to rejection
#' of cases with missing values on any required variable. (NOTE: If
#' given, this argument must be named.)
#' @param contrasts A list of contrasts to be used for some or all
#' the factors appearing as variables in the model formula.
#' @param method A string specifying which classification or
#' regression model to use. Possible values are found using
#' \code{names(getModelInfo())}. See
#' \url{http://topepo.github.io/caret/train-models-by-tag.html}. A
#' list of functions can also be passed for a custom model
#' function. See
#' \url{http://topepo.github.io/caret/using-your-own-model-in-train.html}
#' for details.
#' @param \dots Arguments passed to the classification or
#' regression routine (such as
#' \code{\link[randomForest]{randomForest}}). Errors will occur if
#' values for tuning parameters are passed here.
#' @param preProcess A string vector that defines a pre-processing
#' of the predictor data. Current possibilities are "BoxCox",
#' "YeoJohnson", "expoTrans", "center", "scale", "range",
#' "knnImpute", "bagImpute", "medianImpute", "pca", "ica" and
#' "spatialSign". The default is no pre-processing. See
#' \code{\link{preProcess}} and \code{\link{trainControl}} on the
#' procedures and how to adjust them. Pre-processing code is only
#' designed to work when \code{x} is a simple matrix or data frame.
#' @param metric A string that specifies what summary metric will
#' be used to select the optimal model. By default, possible values
#' are "RMSE" and "Rsquared" for regression and "Accuracy" and
#' "Kappa" for classification. If custom performance metrics are
#' used (via the \code{summaryFunction} argument in
#' \code{\link{trainControl}}, the value of \code{metric} should
#' match one of the arguments. If it does not, a warning is issued
#' and the first metric given by the \code{summaryFunction} is
#' used. (NOTE: If given, this argument must be named.)
#' @param maximize A logical: should the metric be maximized or
#' minimized?
#' @param trControl A list of values that define how this function
#' acts. See \code{\link{trainControl}} and
#' \url{http://topepo.github.io/caret/using-your-own-model-in-train.html}.
#' (NOTE: If given, this argument must be named.)
#' @param tuneGrid A data frame with possible tuning values. The
#' columns are named the same as the tuning parameters. Use
#' \code{\link{getModelInfo}} to get a list of tuning parameters
#' for each model or see
#' \url{http://topepo.github.io/caret/available-models.html}.
#' (NOTE: If given, this argument must be named.)
#' @param tuneLength An integer denoting the amount of granularity
#' in the tuning parameter grid. By default, this argument is the
#' number of levels for each tuning parameters that should be
#' generated by \code{\link{train}}. If \code{\link{trainControl}}
#' has the option \code{search = "random"}, this is the maximum
#' number of tuning parameter combinations that will be generated
#' by the random search. (NOTE: If given, this argument must be
#' named.)
#' @return A list is returned of class \code{train} containing:
#' \item{method }{The chosen model.} \item{modelType }{An
#' identifier of the model type.} \item{results }{A data frame the
#' training error rate and values of the tuning parameters.}
#' \item{bestTune }{A data frame with the final parameters.}
#' \item{call}{The (matched) function call with dots expanded}
#' \item{dots}{A list containing any ... values passed to the
#' original call} \item{metric}{A string that specifies what
#' summary metric will be used to select the optimal model.}
#' \item{control}{The list of control parameters.} \item{preProcess
#' }{Either \code{NULL} or an object of class
#' \code{\link{preProcess}}} \item{finalModel}{A fit object using
#' the best parameters} \item{trainingData}{A data frame}
#' \item{resample}{A data frame with columns for each performance
#' metric. Each row corresponds to each resample. If leave-one-out
#' cross-validation or out-of-bag estimation methods are requested,
#' this will be \code{NULL}. The \code{returnResamp} argument of
#' \code{\link{trainControl}} controls how much of the resampled
#' results are saved.} \item{perfNames}{A character vector of
#' performance metrics that are produced by the summary function}
#' \item{maximize}{A logical recycled from the function arguments.}
#' \item{yLimits}{The range of the training set outcomes.}
#' \item{times}{A list of execution times: \code{everything} is for
#' the entire call to \code{train}, \code{final} for the final
#' model fit and, optionally, \code{prediction} for the time to
#' predict new samples (see \code{\link{trainControl}})}
#' @author Max Kuhn (the guts of \code{train.formula} were based
#' on Ripley's \code{nnet.formula})
#' @seealso \code{\link{models}}, \code{\link{trainControl}},
#' \code{\link{update.train}}, \code{\link{modelLookup}},
#' \code{\link{createFolds}}, \code{\link[recipes]{recipe}}
#' @references \url{http://topepo.github.io/caret/}
#'
#' Kuhn (2008), ``Building Predictive Models in R Using the caret''
#' (\doi{10.18637/jss.v028.i05})
#'
#' \url{https://topepo.github.io/recipes/}
#' @keywords models
#' @examples
#'
#' \dontrun{
#'
#' #######################################
#' ## Classification Example
#'
#' data(iris)
#' TrainData <- iris[,1:4]
#' TrainClasses <- iris[,5]
#'
#' knnFit1 <- train(TrainData, TrainClasses,
#' method = "knn",
#' preProcess = c("center", "scale"),
#' tuneLength = 10,
#' trControl = trainControl(method = "cv"))
#'
#' knnFit2 <- train(TrainData, TrainClasses,
#' method = "knn",
#' preProcess = c("center", "scale"),
#' tuneLength = 10,
#' trControl = trainControl(method = "boot"))
#'
#'
#' library(MASS)
#' nnetFit <- train(TrainData, TrainClasses,
#' method = "nnet",
#' preProcess = "range",
#' tuneLength = 2,
#' trace = FALSE,
#' maxit = 100)
#'
#' #######################################
#' ## Regression Example
#'
#' library(mlbench)
#' data(BostonHousing)
#'
#' lmFit <- train(medv ~ . + rm:lstat,
#' data = BostonHousing,
#' method = "lm")
#'
#' library(rpart)
#' rpartFit <- train(medv ~ .,
#' data = BostonHousing,
#' method = "rpart",
#' tuneLength = 9)
#'
#' #######################################
#' ## Example with a custom metric
#'
#' madSummary <- function (data,
#' lev = NULL,
#' model = NULL) {
#' out <- mad(data$obs - data$pred,
#' na.rm = TRUE)
#' names(out) <- "MAD"
#' out
#' }
#'
#' robustControl <- trainControl(summaryFunction = madSummary)
#' marsGrid <- expand.grid(degree = 1, nprune = (1:10) * 2)
#'
#' earthFit <- train(medv ~ .,
#' data = BostonHousing,
#' method = "earth",
#' tuneGrid = marsGrid,
#' metric = "MAD",
#' maximize = FALSE,
#' trControl = robustControl)
#'
#'
#' #######################################
#' ## Example with a recipe
#'
#' data(cox2)
#'
#' cox2 <- cox2Descr
#' cox2$potency <- cox2IC50
#'
#' library(recipes)
#'
#' cox2_recipe <- recipe(potency ~ ., data = cox2) %>%
#' ## Log the outcome
#' step_log(potency, base = 10) %>%
#' ## Remove sparse and unbalanced predictors
#' step_nzv(all_predictors()) %>%
#' ## Surface area predictors are highly correlated so
#' ## conduct PCA just on these.
#' step_pca(contains("VSA"), prefix = "surf_area_",
#' threshold = .95) %>%
#' ## Remove other highly correlated predictors
#' step_corr(all_predictors(), -starts_with("surf_area_"),
#' threshold = .90) %>%
#' ## Center and scale all of the non-PCA predictors
#' step_center(all_predictors(), -starts_with("surf_area_")) %>%
#' step_scale(all_predictors(), -starts_with("surf_area_"))
#'
#' set.seed(888)
#' cox2_lm <- train(cox2_recipe,
#' data = cox2,
#' method = "lm",
#' trControl = trainControl(method = "cv"))
#'
#' #######################################
#' ## Parallel Processing Example via multicore package
#'
#' ## library(doMC)
#' ## registerDoMC(2)
#'
#' ## NOTE: don't run models form RWeka when using
#' ### multicore. The session will crash.
#'
#' ## The code for train() does not change:
#' set.seed(1)
#' usingMC <- train(medv ~ .,
#' data = BostonHousing,
#' method = "glmboost")
#'
#' ## or use:
#' ## library(doMPI) or
#' ## library(doParallel) or
#' ## library(doSMP) and so on
#'
#' }
#'
#'
#' @export train
"train" <-
function(x, ...){
UseMethod("train")
}
#' @rdname train
#' @importFrom stats predict
#' @importFrom utils object.size flush.console
#' @importFrom withr with_seed
#' @export
train.default <- function(x, y,
method = "rf",
preProcess = NULL,
...,
weights = NULL,
metric = ifelse(is.factor(y), "Accuracy", "RMSE"),
maximize = ifelse(metric %in% c("RMSE", "logLoss", "MAE", "logLoss"), FALSE, TRUE),
trControl = trainControl(),
tuneGrid = NULL,
tuneLength = ifelse(trControl$method == "none", 1, 3)) {
startTime <- proc.time()
if (is.vector(x)) {
ptype <- NULL
} else {
ptype <- x[0,,drop = FALSE]
}
## get a seed before packages are loaded or recipes are processed
rs_seed <- sample.int(.Machine$integer.max, 1L)
if(is.null(colnames(x)))
stop("Please use column names for `x`", call. = FALSE)
if(is.character(y)) y <- as.factor(y)
if( !is.numeric(y) & !is.factor(y) ){
msg <- paste("Please make sure that the outcome column is a factor or numeric.",
"The class(es) of the column:",
paste0("'", class(y), "'", collapse = ", "))
stop(msg, call. = FALSE )
}
if(is.list(method)) {
minNames <- c("library", "type", "parameters", "grid",
"fit", "predict", "prob")
nameCheck <- minNames %in% names(method)
if(!all(nameCheck)) stop(paste("some required components are missing:",
paste(minNames[!nameCheck], collapse = ", ")),
call. = FALSE)
models <- method
method <- "custom"
} else {
models <- getModelInfo(method, regex = FALSE)[[1]]
if (length(models) == 0)
stop(paste("Model", method, "is not in caret's built-in library"), call. = FALSE)
}
checkInstall(models$library)
for(i in seq(along.with = models$library)) do.call("requireNamespaceQuietStop", list(package = models$library[i]))
if(any(names(models) == "check") && is.function(models$check)) {
software_check <- models$check(models$library)
}
paramNames <- as.character(models$parameters$parameter)
funcCall <- match.call(expand.dots = TRUE)
modelType <- get_model_type(y)
if(!(modelType %in% models$type)) stop(paste("wrong model type for", tolower(modelType)), call. = FALSE)
if(grepl("^svm", method) & grepl("String$", method)) {
if(is.vector(x) && is.character(x)) {
stop("'x' should be a character matrix with a single column for string kernel methods", call. = FALSE)
}
if(is.matrix(x) && is.numeric(x)) {
stop("'x' should be a character matrix with a single column for string kernel methods", call. = FALSE)
}
if(is.data.frame(x)) {
stop("'x' should be a character matrix with a single column for string kernel methods", call. = FALSE)
}
}
if(modelType == "Regression" & length(unique(y)) == 2)
warning(paste("You are trying to do regression and your outcome only has",
"two possible values Are you trying to do classification?",
"If so, use a 2 level factor as your outcome column."))
if(modelType != "Classification" & !is.null(trControl$sampling))
stop("sampling methods are only implemented for classification problems", call. = FALSE)
if(!is.null(trControl$sampling)) {
trControl$sampling <- parse_sampling(trControl$sampling)
}
if(inherits(x, "data.table")) x <- as.data.frame(x, stringsAsFactors = TRUE)
check_dims(x = x, y = y)
n <- if(inherits(y, "Surv")) nrow(y) else length(y)
## TODO add check method and execute here
## Some models that use RWeka start multiple threads and this conflicts with multicore:
parallel_check("RWeka", models)
parallel_check("keras", models)
if(!is.null(preProcess) && !(all(names(preProcess) %in% ppMethods)))
stop(paste('pre-processing methods are limited to:', paste(ppMethods, collapse = ", ")), call. = FALSE)
if(modelType == "Classification") {
## We should get and save the class labels to ensure that predictions are coerced
## to factors that have the same levels as the original data. This is especially
## important with multiclass systems where one or more classes have low sample sizes
## relative to the others
classLevels <- levels(y)
attributes(classLevels) <- list(ordered = is.ordered(y))
xtab <- table(y)
if(any(xtab == 0)) {
xtab_msg <- paste("'", names(xtab)[xtab == 0], "'", collapse = ", ", sep = "")
stop(paste("One or more factor levels in the outcome has no data:", xtab_msg), call. = FALSE)
}
if(trControl$classProbs && any(classLevels != make.names(classLevels))) {
stop(paste("At least one of the class levels is not a valid R variable name;",
"This will cause errors when class probabilities are generated because",
"the variables names will be converted to ",
paste(make.names(classLevels), collapse = ", "),
". Please use factor levels that can be used as valid R variable names",
" (see ?make.names for help)."), call. = FALSE)
}
if(metric %in% c("RMSE", "Rsquared"))
stop(paste("Metric", metric, "not applicable for classification models"), call. = FALSE)
if(!trControl$classProbs && metric == "ROC")
stop(paste("Class probabilities are needed to score models using the",
"area under the ROC curve. Set `classProbs = TRUE`",
"in the trainControl() function."), call. = FALSE)
if(trControl$classProbs) {
if(!is.function(models$prob)) {
warning("Class probabilities were requested for a model that does not implement them")
trControl$classProbs <- FALSE
}
}
} else {
if(metric %in% c("Accuracy", "Kappa"))
stop(paste("Metric", metric, "not applicable for regression models"), call. = FALSE)
classLevels <- NA
if(trControl$classProbs) {
warning("cannnot compute class probabilities for regression")
trControl$classProbs <- FALSE
}
}
if(trControl$method == "oob" & is.null(models$oob))
stop("Out of bag estimates are not implemented for this model", call. = FALSE)
## If they don't exist, make the data partitions for the resampling iterations.
trControl <- withr::with_seed(
rs_seed,
make_resamples(trControl, outcome = y)
)
if(is.logical(trControl$savePredictions)) {
trControl$savePredictions <- if(trControl$savePredictions) "all" else "none"
} else {
if(!(trControl$savePredictions %in% c("all", "final", "none")))
stop('`savePredictions` should be either logical or "all", "final" or "none"', call. = FALSE)
}
## Gather all the pre-processing info. We will need it to pass into the grid creation
## code so that there is a concordance between the data used for modeling and grid creation
if(!is.null(preProcess)) {
ppOpt <- list(options = preProcess)
if(length(trControl$preProcOptions) > 0) ppOpt <- c(ppOpt,trControl$preProcOptions)
} else ppOpt <- NULL
## If no default training grid is specified, get one. We have to pass in the formula
## and data for some models (rpart, pam, etc - see manual for more details)
if(is.null(tuneGrid)) {
if(!is.null(ppOpt) && length(models$parameters$parameter) > 1 &&
all(as.character(models$parameters$parameter) != "parameter")) {
pp <- list(method = ppOpt$options)
if("ica" %in% pp$method) pp$n.comp <- ppOpt$ICAcomp
if("pca" %in% pp$method) pp$thresh <- ppOpt$thresh
if("knnImpute" %in% pp$method) pp$k <- ppOpt$k
pp$x <- x
ppObj <- do.call("preProcess", pp)
tuneGrid <- models$grid(x = predict(ppObj, x),
y = y,
len = tuneLength,
search = trControl$search)
rm(ppObj, pp)
} else {
tuneGrid <- models$grid(x = x, y = y, len = tuneLength, search = trControl$search)
if (trControl$search != "grid" && tuneLength < nrow(tuneGrid))
tuneGrid <- tuneGrid[1:tuneLength,,drop = FALSE]
}
}
## Remove duplicates from grid that can occur with random sampling and discrete model parameters
tuneGrid <- tuneGrid[!duplicated(tuneGrid), , drop = FALSE]
## Check to make sure that there are tuning parameters in some cases
if(grepl("adaptive", trControl$method) & nrow(tuneGrid) == 1) {
stop(paste("For adaptive resampling, there needs to be more than one",
"tuning parameter for evaluation"), call. = FALSE)
}
dotNames <- hasDots(tuneGrid, models)
if(dotNames) colnames(tuneGrid) <- gsub("^\\.", "", colnames(tuneGrid))
## Check tuning parameter names
tuneNames <- as.character(models$parameters$parameter)
if (!all(colnames(tuneGrid) %in% tuneNames)) {
badNames <- colnames(tuneGrid)[!(colnames(tuneGrid) %in% tuneNames)]
stop(paste("The tuning parameter grid should have columns",
paste(tuneNames, collapse = ", ", sep = "")), call. = FALSE)
}
goodNames <- all.equal(sort(tuneNames), sort(names(tuneGrid)))
if(!is.logical(goodNames) || !goodNames) {
stop(paste("The tuning parameter grid should have columns",
paste(tuneNames, collapse = ", ", sep = "")), call. = FALSE)
}
if(trControl$method == "none" && nrow(tuneGrid) != 1)
stop("Only one model should be specified in tuneGrid with no resampling", call. = FALSE)
## In case prediction bounds are used, compute the limits. For now,
## store these in the control object since that gets passed everywhere
trControl$yLimits <- if(is.numeric(y)) get_range(y) else NULL
if(trControl$method != "none") {
##------------------------------------------------------------------------------------------------------------------------------------------------------#
## For each tuning parameter combination, we will loop over them, fit models and generate predictions.
## We only save the predictions at this point, not the models (and in the case of method = "oob" we
## only save the prediction summaries at this stage.
## trainInfo will hold the information about how we should loop to train the model and what types
## of parameters are used.
## There are two types of methods to build the models: "basic" means that each tuning parameter
## combination requires it's own model fit and "seq" where a single model fit can be used to
## get predictions for multiple tuning parameters.
## The tuneScheme() function is in miscr.R and it helps define the following:
## - A data frame called "loop" with columns for parameters and a row for each model to be fit.
## For "basic" models, this is the same as the tuning grid. For "seq" models, it is only
## the subset of parameters that need to be fit
## - A list called "submodels". If "basic", it is NULL. For "seq" models, it is a list. Each list
## item is a data frame of the parameters that need to be varied for the corresponding row of
## the loop object.
##
## For example, for a gbm model, our tuning grid might be:
## .interaction.depth .n.trees .shrinkage
## 1 50 0.1
## 1 100 0.1
## 2 50 0.1
## 2 100 0.1
## 2 150 0.1
##
## For this example:
##
## loop:
## .interaction.depth .shrinkage .n.trees
## 1 0.1 100
## 2 0.1 150
##
## submodels:
## [[1]]
## .n.trees
## 50
##
## [[2]]
## .n.trees
## 50
## 100
##
## A simplified version of predictionFunction() would have the following gbm section:
##
## # First get the predictions with the value of n.trees as given in the current
## # row of loop
## out <- predict(modelFit,
## newdata,
## type = "response",
## n.trees = modelFit$tuneValue$.n.trees)
##
## # param is the current value of submodels. In normal prediction mode (i.e
## # when using predict.train), param = NULL. When called within train()
## # with this model, it will have the other values for n.trees.
## # In this case, the output of the function is a list of predictions
## # These values are deconvoluted in workerTasks() in misc.R
## if(!is.null(param))
## {
## tmp <- vector(mode = "list", length = nrow(param) + 1)
## tmp[[1]] <- out
##
## for(j in seq(along.with = param$.n.trees))
## {
## tmp[[j]] <- predict(modelFit,
## newdata,
## type = "response",
## n.trees = param$.n.trees[j])
## }
## out <- tmp
##
# paramCols <- paste(".", as.character(models$parameters$parameter), sep = "")
if(is.function(models$loop) && nrow(tuneGrid) > 1){
trainInfo <- models$loop(tuneGrid)
if(!all(c("loop", "submodels") %in% names(trainInfo)))
stop("The 'loop' function should produce a list with elements 'loop' and 'submodels'", call. = FALSE)
lengths <- unlist(lapply(trainInfo$submodels, nrow))
if(all(lengths == 0)) trainInfo$submodels <- NULL
} else trainInfo <- list(loop = tuneGrid)
num_rs <- if(trControl$method != "oob") length(trControl$index) else 1L
if(trControl$method %in% c("boot632", "optimism_boot", "boot_all")) num_rs <- num_rs + 1L
## Set or check the seeds when needed
if(is.null(trControl$seeds) || all(is.na(trControl$seeds))) {
seeds <- sample.int(n = 1000000L, size = num_rs * nrow(trainInfo$loop) + 1L)
seeds <- lapply(seq(from = 1L, to = length(seeds), by = nrow(trainInfo$loop)),
function(x) { seeds[x:(x+nrow(trainInfo$loop)-1L)] })
seeds[[num_rs + 1L]] <- seeds[[num_rs + 1L]][1L]
trControl$seeds <- seeds
} else {
if(!(length(trControl$seeds) == 1 && is.na(trControl$seeds))) {
## check versus number of tasks
numSeeds <- unlist(lapply(trControl$seeds, length))
badSeed <- (length(trControl$seeds) < num_rs + 1L) ||
(any(numSeeds[-length(numSeeds)] < nrow(trainInfo$loop))) ||
(numSeeds[length(numSeeds)] < 1L)
if(badSeed) stop(paste("Bad seeds: the seed object should be a list of length",
num_rs + 1, "with",
num_rs, "integer vectors of size",
nrow(trainInfo$loop), "and the last list element having at least a",
"single integer"), call. = FALSE)
if(any(is.na(unlist(trControl$seeds)))) stop("At least one seed is missing (NA)", call. = FALSE)
}
}
## SURV TODO: modify defaultSummary for Surv objects
if(trControl$method == "oob") {
## delay this test until later
perfNames <- metric
} else {
## run some data thru the summary function and see what we get
testSummary <- evalSummaryFunction(y, wts = weights, ctrl = trControl,
lev = classLevels, metric = metric,
method = method)
perfNames <- names(testSummary)
}
if(!(metric %in% perfNames)){
oldMetric <- metric
metric <- perfNames[1]
warning(paste("The metric \"",
oldMetric,
"\" was not in ",
"the result set. ",
metric,
" will be used instead.",
sep = ""))
}
if(trControl$method == "oob"){
tmp <- oobTrainWorkflow(x = x, y = y, wts = weights,
info = trainInfo, method = models,
ppOpts = preProcess, ctrl = trControl, lev = classLevels, ...)
performance <- tmp
perfNames <- colnames(performance)
perfNames <- perfNames[!(perfNames %in% as.character(models$parameters$parameter))]
if(!(metric %in% perfNames)){
oldMetric <- metric
metric <- perfNames[1]
warning(paste("The metric \"",
oldMetric,
"\" was not in ",
"the result set. ",
metric,
" will be used instead.",
sep = ""))
}
} else {
if(trControl$method == "LOOCV"){
tmp <- looTrainWorkflow(x = x, y = y, wts = weights,
info = trainInfo, method = models,
ppOpts = preProcess, ctrl = trControl, lev = classLevels, ...)
performance <- tmp$performance
} else {
if(!grepl("adapt", trControl$method)){
tmp <- nominalTrainWorkflow(x = x, y = y, wts = weights,
info = trainInfo, method = models,
ppOpts = preProcess, ctrl = trControl, lev = classLevels, ...)
performance <- tmp$performance
resampleResults <- tmp$resample
} else {
tmp <- adaptiveWorkflow(x = x, y = y, wts = weights,
info = trainInfo, method = models,
ppOpts = preProcess,
ctrl = trControl,
lev = classLevels,
metric = metric,
maximize = maximize,
...)
performance <- tmp$performance
resampleResults <- tmp$resample
}
}
}
## Remove extra indices
trControl$indexExtra <- NULL
## TODO we used to give resampled results for LOO
if(!(trControl$method %in% c("LOOCV", "oob"))) {
if(modelType == "Classification" && length(grep("^\\cell", colnames(resampleResults))) > 0) {
resampledCM <- resampleResults[, !(names(resampleResults) %in% perfNames)]
resampleResults <- resampleResults[, -grep("^\\cell", colnames(resampleResults))]
#colnames(resampledCM) <- gsub("^\\.", "", colnames(resampledCM))
} else resampledCM <- NULL
} else resampledCM <- NULL
if(trControl$verboseIter) {
cat("Aggregating results\n")
flush.console()
}
perfCols <- names(performance)
perfCols <- perfCols[!(perfCols %in% paramNames)]
if(all(is.na(performance[, metric]))) {
cat(paste("Something is wrong; all the", metric, "metric values are missing:\n"))
print(summary(performance[, perfCols[!grepl("SD$", perfCols)], drop = FALSE]))
stop("Stopping", call. = FALSE)
}
## Sort the tuning parameters from least complex to most complex
if(!is.null(models$sort)) performance <- models$sort(performance)
if(any(is.na(performance[, metric])))
warning("missing values found in aggregated results")
if(trControl$verboseIter && nrow(performance) > 1) {
cat("Selecting tuning parameters\n")
flush.console()
}
## select the optimal set
selectClass <- class(trControl$selectionFunction)[1]
## Select the "optimal" tuning parameter.
if(grepl("adapt", trControl$method)) {
perf_check <- subset(performance, .B == max(performance$.B))
} else perf_check <- performance
## Make adaptive only look at parameters with B = max(B)
if(selectClass == "function") {
bestIter <- trControl$selectionFunction(x = perf_check,
metric = metric,
maximize = maximize)
}
else {
if(trControl$selectionFunction == "oneSE") {
bestIter <- oneSE(perf_check,
metric,
length(trControl$index),
maximize)
} else {
bestIter <- do.call(trControl$selectionFunction,
list(x = perf_check,
metric = metric,
maximize = maximize))
}
}
if(is.na(bestIter) || length(bestIter) != 1) stop("final tuning parameters could not be determined", call. = FALSE)
if(grepl("adapt", trControl$method)) {
best_perf <- perf_check[bestIter,as.character(models$parameters$parameter),drop = FALSE]
performance$order <- 1:nrow(performance)
bestIter <- merge(performance, best_perf)$order
performance$order <- NULL
}
## Based on the optimality criterion, select the tuning parameter(s)
bestTune <- performance[bestIter, paramNames, drop = FALSE]
} else {
bestTune <- tuneGrid
performance <- evalSummaryFunction(y, wts = weights,
ctrl = trControl,
lev = classLevels,
metric = metric,
method = method)
perfNames <- names(performance)
performance <- as.data.frame(t(performance), stringsAsFactors = TRUE)
performance <- cbind(performance, tuneGrid)
performance <- performance[-1,,drop = FALSE]
tmp <- resampledCM <- NULL
}
## Save some or all of the resampling summary metrics
if(!(trControl$method %in% c("LOOCV", "oob", "none"))) {
byResample <- switch(trControl$returnResamp,
none = NULL,
all = {
out <- resampleResults
colnames(out) <- gsub("^\\.", "", colnames(out))
out
},
final = {
out <- merge(bestTune, resampleResults)
out <- out[,!(names(out) %in% names(tuneGrid)), drop = FALSE]
out
})
} else {
byResample <- NULL
}
# names(bestTune) <- paste(".", names(bestTune), sep = "")
## Reorder rows of performance
orderList <- list()
for(i in seq(along.with = paramNames)) orderList[[i]] <- performance[,paramNames[i]]
performance <- performance[do.call("order", orderList),]
if(trControl$verboseIter) {
bestText <- paste(paste(names(bestTune), "=",
format(bestTune, digits = 3)),
collapse = ", ")
if(nrow(performance) == 1) bestText <- "final model"
cat("Fitting", bestText, "on full training set\n")
flush.console()
}
## Make the final model based on the tuning results
indexFinal <- if(is.null(trControl$indexFinal)) seq(along.with = y) else trControl$indexFinal
if(!(length(trControl$seeds) == 1 && is.na(trControl$seeds))) set.seed(trControl$seeds[[length(trControl$seeds)]][1])
startFinalTime <- proc.time()
finalModel <- createModel(x = subset_x(x, indexFinal),
y = y[indexFinal],
wts = weights[indexFinal],
method = models,
tuneValue = bestTune,
obsLevels = classLevels,
pp = ppOpt,
last = TRUE,
classProbs = trControl$classProbs,
sampling = trControl$sampling,
...)
endFinalTime <- proc.time()
if(trControl$trim && !is.null(models$trim)) {
if(trControl$verboseIter) old_size <- object.size(finalModel$fit)
finalModel$fit <- models$trim(finalModel$fit)
if(trControl$verboseIter) {
new_size <- object.size(finalModel$fit)
reduction <- format(old_size - new_size, units = "Mb")
if(reduction == "0 Mb") reduction <- "< 0 Mb"
p_reduction <- (unclass(old_size) - unclass(new_size))/unclass(old_size)*100
p_reduction <- if(p_reduction < 1) "< 1%" else paste0(round(p_reduction, 0), "%")
cat("Final model footprint reduced by", reduction, "or", p_reduction, "\n")
}
}
## get pp info
pp <- finalModel$preProc
finalModel <- finalModel$fit
## Remove this and check for other places it is reference
## replaced by tuneValue
if(method == "pls") finalModel$bestIter <- bestTune
## To use predict.train and automatically use the optimal lambda,
## we need to save it
if(method == "glmnet") finalModel$lambdaOpt <- bestTune$lambda
if(trControl$returnData) {
outData <- if (inherits(x, "sparseMatrix")) as.matrix(x) else x
if(!is.data.frame(outData)) {
outData <- try(as.data.frame(outData, stringsAsFactors = TRUE), silent = TRUE)
}
if(inherits(outData, "try-error")) {
warning("The training data could not be converted to a data frame for saving")
outData <- NULL
} else {
outData$.outcome <- y
if(!is.null(weights)) outData$.weights <- weights
}
} else outData <- NULL
if(trControl$savePredictions == "final")
tmp$predictions <- merge(bestTune, tmp$predictions)
endTime <- proc.time()
times <- list(everything = endTime - startTime,
final = endFinalTime - startFinalTime)
out <- structure(list(method = method,
modelInfo = models,
modelType = modelType,
results = performance,
pred = tmp$predictions,
bestTune = bestTune,
call = funcCall,
dots = list(...),
metric = metric,
control = trControl,
finalModel = finalModel,
preProcess = pp,
trainingData = outData,
ptype = ptype,
resample = byResample,
resampledCM = resampledCM,
perfNames = perfNames,
maximize = maximize,
yLimits = trControl$yLimits,
times = times,
levels = classLevels),
class = "train")
trControl$yLimits <- NULL
if(trControl$timingSamps > 0) {
pData <- x[sample(1:nrow(x), trControl$timingSamps, replace = TRUE),,drop = FALSE]
out$times$prediction <- system.time(predict(out, pData))
} else out$times$prediction <- rep(NA, 3)
out
}
#' @rdname train
#' @importFrom stats .getXlevels complete.cases contrasts model.frame model.matrix model.response model.weights na.fail
#' @export
train.formula <- function (form, data, ..., weights, subset, na.action = na.fail, contrasts = NULL) {
m <- match.call(expand.dots = FALSE)
if (is.matrix(eval.parent(m$data))) m$data <- as.data.frame(data, stringsAsFactors = TRUE)
m$... <- m$contrasts <- NULL
check_na_conflict(match.call(expand.dots = TRUE))
## Look for missing `na.action` in call. To make the default (`na.fail`)
## recognizable by `eval.parent(m)`, we need to add it to the call
## object `m`
if(!("na.action" %in% names(m))) m$na.action <- quote(na.fail)
# do we need the double colon here?
m[[1]] <- quote(stats::model.frame)
names(m)[names(m) == "form"] <- "formula" # avoid warning under warnPartialMatchArgs=TRUE
m <- eval.parent(m)
if(nrow(m) < 1) stop("Every row has at least one missing value were found", call. = FALSE)
Terms <- attr(m, "terms")
ptype <- terms_ptype(Terms, data)
x <- model.matrix(Terms, m, contrasts)
cons <- attr(x, "contrast")
int_flag <- grepl("(Intercept)", colnames(x))
if (any(int_flag)) x <- x[, !int_flag, drop = FALSE]
w <- as.vector(model.weights(m))
y <- model.response(m)
res <- train(x, y, weights = w, ...)
res$terms <- Terms
res$coefnames <- colnames(x)
res$call <- match.call()
res$na.action <- attr(m, "na.action")
res$contrasts <- cons
res$xlevels <- .getXlevels(Terms, m)
res$ptype <- ptype
if(!is.null(res$trainingData)) {
## We re-save the original data from the formula interface
## since it has not been converted to dummy variables.
res$trainingData <- data[,all.vars(Terms), drop = FALSE]
isY <- names(res$trainingData) %in% as.character(form[[2]])
if(any(isY)) colnames(res$trainingData)[isY] <- ".outcome"
}
class(res) <- c("train", "train.formula")
res
}
#' @rdname train
#' @importFrom withr with_seed
#' @export
train.recipe <- function(x,
data,
method = "rf",
...,
metric = ifelse(is.factor(y_dat), "Accuracy", "RMSE"),
maximize = ifelse(metric %in% c("RMSE", "logLoss", "MAE"), FALSE, TRUE),
trControl = trainControl(),
tuneGrid = NULL,
tuneLength = ifelse(trControl$method == "none", 1, 3)) {
startTime <- proc.time()
## get a seed before packages are loaded or recipes are processed
rs_seed <- sample.int(.Machine$integer.max, 1L)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
preproc_dots(...)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if(is.list(method)) {
minNames <- c("library", "type", "parameters", "grid",
"fit", "predict", "prob")
nameCheck <- minNames %in% names(method)
if(!all(nameCheck)) stop(paste("some required components are missing:",
paste(minNames[!nameCheck], collapse = ", ")),
call. = FALSE)
models <- method
method <- "custom"
} else {
models <- getModelInfo(method, regex = FALSE)[[1]]
if (length(models) == 0)
stop(paste("Model", method, "is not in caret's built-in library"), call. = FALSE)
}
checkInstall(models$library)
for(i in seq(along.with = models$library))
do.call("requireNamespace", list(package = models$library[i]))
if(any(names(models) == "check") && is.function(models$check)) {
software_check <- models$check(models$library)
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# prep and bake recipe on entire training set
if(trControl$verboseIter) {
cat("Preparing recipe\n")
flush.console()
}
trained_rec <- prep(x, training = data,
fresh = TRUE,
retain = TRUE,
verbose = FALSE,
strings_as_factors = TRUE)
x_dat <- juice(trained_rec, all_predictors())
y_dat <- juice(trained_rec, all_outcomes())
if(ncol(y_dat) > 1)
stop("`train` doesn't support multivariate outcomes")
y_dat <- getElement(y_dat, names(y_dat))
is_weight <- summary(trained_rec)$role == "case weight"
if(any(is_weight)) {
if(sum(is_weight) > 1)
stop("Ony one column can be used as a case weight.")
weights <- juice(trained_rec, has_role("case weight"))
weights <- getElement(weights, names(weights))
} else weights <- NULL
is_perf <- summary(trained_rec)$role == "performance var"
if(any(is_perf)) {
perf_data <- juice(trained_rec, has_role("performance var"))
} else perf_data <- NULL
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
paramNames <- as.character(models$parameters$parameter)
funcCall <- match.call(expand.dots = TRUE)
modelType <- get_model_type(y_dat)
if(!(modelType %in% models$type))
stop(paste("wrong model type for", tolower(modelType)), call. = FALSE)
## RECIPE the rec might produce character `x_dat` so convert if these
## models are used? These need to be re-though since no matrix results
if(grepl("^svm", method) & grepl("String$", method)) {
if(is.vector(x_dat) && is.character(x_dat)) {
stop("'x_dat' should be a character matrix with a single column for string kernel methods",
call. = FALSE)
}
if(is.matrix(x_dat) && is.numeric(x_dat)) {
stop("'x_dat' should be a character matrix with a single column for string kernel methods",
call. = FALSE)
}
if(is.data.frame(x_dat)) {
stop("'x_dat' should be a character matrix with a single column for string kernel methods",
call. = FALSE)
}
}
if(modelType == "Regression" & length(unique(y_dat)) == 2)
warning(paste("You are trying to do regression and your outcome only has",
"two possible values Are you trying to do classification?",
"If so, use a 2 level factor as your outcome column."))
if(modelType != "Classification" & !is.null(trControl$sampling))
stop("sampling methods are only implemented for classification problems",
call. = FALSE)
if(!is.null(trControl$sampling)) {
trControl$sampling <- parse_sampling(trControl$sampling)
}
check_dims(x = x_dat, y = y_dat)
n <- if(inherits(y_dat, "Surv")) nrow(y_dat) else length(y_dat)
## Some models that use RWeka start multiple threads and this conflicts with multicore:
parallel_check("RWeka", models)
parallel_check("keras", models)
if(modelType == "Classification") {
## We should get and save the class labels to ensure that predictions are coerced
## to factors that have the same levels as the original data. This is especially
## important with multiclass systems where one or more classes have low sample sizes
## relative to the others
classLevels <- levels(y_dat)
attributes(classLevels) <- list(ordered = is.ordered(y_dat))
xtab <- table(y_dat)
if(any(xtab == 0)) {
xtab_msg <- paste("'", names(xtab)[xtab == 0], "'", collapse = ", ", sep = "")
stop(paste("One or more factor levels in the outcome has no data:", xtab_msg),
call. = FALSE)
}
if(trControl$classProbs && any(classLevels != make.names(classLevels))) {
stop(paste("At least one of the class levels is not a valid R variable name;",
"This will cause errors when class probabilities are generated because",
"the variables names will be converted to ",
paste(make.names(classLevels), collapse = ", "),
". Please use factor levels that can be used as valid R variable names",
" (see ?make.names for help)."), call. = FALSE)
}
if(metric %in% c("RMSE", "Rsquared"))
stop(paste("Metric", metric, "not applicable for classification models"),
call. = FALSE)
if(!trControl$classProbs && metric == "ROC")
stop(paste("Class probabilities are needed to score models using the",
"area under the ROC curve. Set `classProbs = TRUE`",
"in the trainControl() function."), call. = FALSE)
if(trControl$classProbs) {
if(!is.function(models$prob)) {
warning("Class probabilities were requested for a model that does not implement them")
trControl$classProbs <- FALSE
}
}
} else {
if(metric %in% c("Accuracy", "Kappa"))
stop(paste("Metric", metric, "not applicable for regression models"),
call. = FALSE)
classLevels <- NA
if(trControl$classProbs) {
warning("cannnot compute class probabilities for regression")
trControl$classProbs <- FALSE
}
}
if(trControl$method == "oob" & is.null(models$oob))
stop("Out of bag estimates are not implemented for this model",
call. = FALSE)
## If they don't exist, make the data partitions for the resampling iterations.
# Get outcomes from the _original_ data since that is what should be given to
# the recipe
y_orig_val <- trained_rec$var_info$variable[trained_rec$var_info$role == "outcome"]
y_orig_val <- y_orig_val
trControl <- withr::with_seed(
rs_seed,
make_resamples(trControl, outcome = data[[y_orig_val]])
)
if(is.logical(trControl$savePredictions)) {
trControl$savePredictions <- if(trControl$savePredictions) "all" else "none"
} else {
if(!(trControl$savePredictions %in% c("all", "final", "none")))
stop('`savePredictions` should be either logical or "all", "final" or "none"', call. = FALSE)
}
if(is.null(tuneGrid)) {
tuneGrid <- models$grid(x = x_dat, y = y_dat, len = tuneLength, search = trControl$search)
if (trControl$search != "grid" && tuneLength < nrow(tuneGrid))
tuneGrid <- tuneGrid[1:tuneLength,,drop = FALSE]
}
## Check to make sure that there are tuning parameters in some cases
if(grepl("adaptive", trControl$method) & nrow(tuneGrid) == 1) {
stop(paste("For adaptive resampling, there needs to be more than one",
"tuning parameter for evaluation"), call. = FALSE)
}
dotNames <- hasDots(tuneGrid, models)
if(dotNames) colnames(tuneGrid) <- gsub("^\\.", "", colnames(tuneGrid))
## Check tuning parameter names
tuneNames <- as.character(models$parameters$parameter)
goodNames <- all.equal(sort(tuneNames), sort(names(tuneGrid)))
if(!is.logical(goodNames) || !goodNames) {
stop(paste("The tuning parameter grid should have columns",
paste(tuneNames, collapse = ", ", sep = "")), call. = FALSE)
}
if(trControl$method == "none" && nrow(tuneGrid) != 1)
stop("Only one model should be specified in tuneGrid with no resampling", call. = FALSE)
## In case prediction bounds are used, compute the limits. For now,
## store these in the control object since that gets passed everywhere
trControl$yLimits <- if(is.numeric(y_dat)) get_range(y_dat) else NULL
if(trControl$method != "none") {
if(is.function(models$loop) && nrow(tuneGrid) > 1){
trainInfo <- models$loop(tuneGrid)
if(!all(c("loop", "submodels") %in% names(trainInfo)))
stop("The 'loop' function should produce a list with elements 'loop' and 'submodels'", call. = FALSE)
lengths <- unlist(lapply(trainInfo$submodels, nrow))
if(all(lengths == 0)) trainInfo$submodels <- NULL
} else trainInfo <- list(loop = tuneGrid)
num_rs <- if(trControl$method != "oob") length(trControl$index) else 1L
if(trControl$method %in% c("boot632", "optimism_boot", "boot_all")) num_rs <- num_rs + 1L
## Set or check the seeds when needed
if(is.null(trControl$seeds) || all(is.na(trControl$seeds))) {
seeds <- sample.int(n = 1000000L, size = num_rs * nrow(trainInfo$loop) + 1L)
seeds <- lapply(seq(from = 1L, to = length(seeds), by = nrow(trainInfo$loop)),
function(x) { seeds[x:(x+nrow(trainInfo$loop)-1L)] })
seeds[[num_rs + 1L]] <- seeds[[num_rs + 1L]][1L]
trControl$seeds <- seeds
} else {
if(!(length(trControl$seeds) == 1 && is.na(trControl$seeds))) {
## check versus number of tasks
numSeeds <- unlist(lapply(trControl$seeds, length))
badSeed <- (length(trControl$seeds) < num_rs + 1L) ||
(any(numSeeds[-length(numSeeds)] < nrow(trainInfo$loop))) ||
(numSeeds[length(numSeeds)] < 1L)
if(badSeed) stop(paste("Bad seeds: the seed object should be a list of length",
num_rs + 1, "with",
num_rs, "integer vectors of size",
nrow(trainInfo$loop), "and the last list element having at least a",
"single integer"), call. = FALSE)
if(any(is.na(unlist(trControl$seeds)))) stop("At least one seed is missing (NA)", call. = FALSE)
}
}
if(trControl$method == "oob") {
## delay this test until later
perfNames <- metric
} else {
## run some data thru the summary function and see what we get
testSummary <- evalSummaryFunction(y_dat,
perf = perf_data,
wts = weights, ctrl = trControl,
lev = classLevels, metric = metric,
method = method)
perfNames <- names(testSummary)
}
if(!(metric %in% perfNames)){
oldMetric <- metric
metric <- perfNames[1]
warning(paste("The metric \"",
oldMetric,
"\" was not in ",
"the result set. ",
metric,
" will be used instead.",
sep = ""))
}
if(trControl$method == "oob"){
tmp <- oob_train_rec(rec = x, dat = data,
info = trainInfo, method = models,
ctrl = trControl, lev = classLevels, ...)
performance <- tmp
perfNames <- colnames(performance)
perfNames <- perfNames[!(perfNames %in% as.character(models$parameters$parameter))]
if(!(metric %in% perfNames)){
oldMetric <- metric
metric <- perfNames[1]
warning(paste("The metric \"",
oldMetric,
"\" was not in ",
"the result set. ",
metric,
" will be used instead.",
sep = ""))
}
} else {
if(trControl$method == "LOOCV"){
tmp <- loo_train_rec(rec = x, dat = data,
info = trainInfo, method = models,
ctrl = trControl, lev = classLevels, ...)
performance <- tmp$performance
} else {
if(!grepl("adapt", trControl$method)){
tmp <- train_rec(rec = x, dat = data,
info = trainInfo, method = models,
ctrl = trControl, lev = classLevels, ...)
performance <- tmp$performance
resampleResults <- tmp$resample
} else {
tmp <- train_adapt_rec(rec = x, dat = data,
info = trainInfo,
method = models,
ctrl = trControl,
lev = classLevels,
metric = metric,
maximize = maximize,
...)
performance <- tmp$performance
resampleResults <- tmp$resample
}
}
}
## Remove extra indices
trControl$indexExtra <- NULL
if(!(trControl$method %in% c("LOOCV", "oob"))) {
if(modelType == "Classification" && length(grep("^\\cell", colnames(resampleResults))) > 0) {
resampledCM <- resampleResults[, !(names(resampleResults) %in% perfNames)]
resampleResults <- resampleResults[, -grep("^\\cell", colnames(resampleResults))]
#colnames(resampledCM) <- gsub("^\\.", "", colnames(resampledCM))
} else resampledCM <- NULL
} else resampledCM <- NULL
if(trControl$verboseIter) {
cat("Aggregating results\n")
flush.console()
}
perfCols <- names(performance)
perfCols <- perfCols[!(perfCols %in% paramNames)]
if(all(is.na(performance[, metric]))) {
cat(paste("Something is wrong; all the", metric, "metric values are missing:\n"))
print(summary(performance[, perfCols[!grepl("SD$", perfCols)], drop = FALSE]))
stop("Stopping", call. = FALSE)
}
## Sort the tuning parameters from least complex to most complex
if(!is.null(models$sort)) performance <- models$sort(performance)
if(any(is.na(performance[, metric])))
warning("missing values found in aggregated results")
if(trControl$verboseIter && nrow(performance) > 1) {
cat("Selecting tuning parameters\n")
flush.console()
}
## select the optimal set
selectClass <- class(trControl$selectionFunction)[1]
## Select the "optimal" tuning parameter.
if(grepl("adapt", trControl$method)) {
perf_check <- subset(performance, Num_Resamples == max(performance$Num_Resamples))
} else perf_check <- performance
## Make adaptive only look at parameters with B = max(B)
if(selectClass == "function") {
bestIter <- trControl$selectionFunction(x = perf_check,
metric = metric,
maximize = maximize)
}
else {
if(trControl$selectionFunction == "oneSE") {
bestIter <- oneSE(perf_check,
metric,
length(trControl$index),
maximize)
} else {
bestIter <- do.call(trControl$selectionFunction,
list(x = perf_check,
metric = metric,
maximize = maximize))
}
}
if(is.na(bestIter) || length(bestIter) != 1)
stop("final tuning parameters could not be determined", call. = FALSE)
if(grepl("adapt", trControl$method)) {
best_perf <- perf_check[bestIter,as.character(models$parameters$parameter),drop = FALSE]
performance$order <- 1:nrow(performance)
bestIter <- merge(performance, best_perf)$order
performance$order <- NULL
}
## Based on the optimality criterion, select the tuning parameter(s)
bestTune <- performance[bestIter, paramNames, drop = FALSE]
} else {
bestTune <- tuneGrid
performance <- evalSummaryFunction(y_dat, wts = weights,
ctrl = trControl,
lev = classLevels,
metric = metric,
method = method)
perfNames <- names(performance)
performance <- as.data.frame(t(performance), stringsAsFactors = TRUE)
performance <- cbind(performance, tuneGrid)
performance <- performance[-1,,drop = FALSE]
tmp <- resampledCM <- NULL
} # end(trControl$method != "none")
## Save some or all of the resampling summary metrics
if(!(trControl$method %in% c("LOOCV", "oob", "none"))) {
byResample <- switch(trControl$returnResamp,
none = NULL,
all = {
out <- resampleResults
colnames(out) <- gsub("^\\.", "", colnames(out))
out
},
final = {
out <- merge(bestTune, resampleResults)
out <- out[,!(names(out) %in% names(tuneGrid)), drop = FALSE]
out
})
} else {
byResample <- NULL
}
## Reorder rows of performance
orderList <- list()
for(i in seq(along.with = paramNames)) orderList[[i]] <- performance[,paramNames[i]]
performance <- performance[do.call("order", orderList),]
if(trControl$verboseIter) {
bestText <- paste(paste(names(bestTune), "=",
format(bestTune, digits = 3)),
collapse = ", ")
if(nrow(performance) == 1) bestText <- "final model"
cat("Fitting", bestText, "on full training set\n")
flush.console()
}
## Make the final model based on the tuning results
indexFinal <- if(is.null(trControl$indexFinal))
seq(along.with = data[[y_orig_val]]) else trControl$indexFinal
if(!(length(trControl$seeds) == 1 && is.na(trControl$seeds)))
set.seed(trControl$seeds[[length(trControl$seeds)]][1])
finalTime <- system.time(
finalModel <- rec_model(x,
subset_x(data, indexFinal),
method = models,
tuneValue = bestTune,
obsLevels = classLevels,
last = TRUE,
classProbs = trControl$classProbs,
sampling = trControl$sampling,
...)
)
if(trControl$trim && !is.null(models$trim)) {
if(trControl$verboseIter) old_size <- object.size(finalModel$fit)
finalModel$fit <- models$trim(finalModel$fit)
if(trControl$verboseIter) {
new_size <- object.size(finalModel$fit)
reduction <- format(old_size - new_size, units = "Mb")
if(reduction == "0 Mb") reduction <- "< 0 Mb"
p_reduction <- (unclass(old_size) - unclass(new_size))/unclass(old_size)*100
p_reduction <- if(p_reduction < 1) "< 1%" else paste0(round(p_reduction, 0), "%")
cat("Final model footprint reduced by", reduction, "or", p_reduction, "\n")
}
}
trained_rec <- finalModel$recipe
finalModel <- finalModel$fit
## Remove this and check for other places it is reference
## replaced by tuneValue
if(method == "pls") finalModel$bestIter <- bestTune
## To use predict.train and automatically use the optimal lambda,
## we need to save it
if(method == "glmnet") finalModel$lambdaOpt <- bestTune$lambda
if(trControl$returnData) {
outData <- data
} else outData <- NULL
if(trControl$savePredictions == "final")
tmp$predictions <- merge(bestTune, tmp$predictions)
endTime <- proc.time()
times <- list(everything = endTime - startTime,
final = finalTime)
out <- structure(list(method = method,
modelInfo = models,
modelType = modelType,
recipe = trained_rec,
results = performance,
pred = tmp$predictions,
bestTune = bestTune,
call = funcCall,
dots = list(...),
metric = metric,
control = trControl,
finalModel = finalModel,
trainingData = outData,
resample = byResample,
resampledCM = resampledCM,
perfNames = perfNames,
maximize = maximize,
yLimits = trControl$yLimits,
times = times,
levels = classLevels,
rs_seed = rs_seed),
class = c("train.recipe", "train"))
trControl$yLimits <- NULL
if(trControl$timingSamps > 0) {
pData <- x_dat[sample(1:nrow(x_dat), trControl$timingSamps, replace = TRUE),,drop = FALSE]
out$times$prediction <- system.time(predict(out, pData))
} else out$times$prediction <- rep(NA, 3)
out
}
#' @method summary train
#' @export
summary.train <- function(object, ...) summary(object$finalModel, ...)
#' @importFrom stats predict residuals
#' @export
residuals.train <- function(object, ...) {
if(object$modelType != "Regression") stop("train() only produces residuals on numeric outcomes", call. = FALSE)
resid <- residuals(object$finalModel, ...)
if(is.null(resid)) {
if(!is.null(object$trainingData)) {
resid <- object$trainingData$.outcome - predict(object, object$trainingData[, names(object$trainingData) != ".outcome",drop = FALSE])
} else stop("The training data must be saved to produce residuals", call. = FALSE)
}
resid
}
#' @importFrom stats predict fitted
#' @export
fitted.train <- function(object, ...) {
prd <- fitted(object$finalModel)
if(is.null(prd)) {
if(!is.null(object$trainingData)) {
prd <- predict(object, object$trainingData[, names(object$trainingData) != ".outcome",drop = FALSE])
} else stop("The training data must be saved to produce fitted values", call. = FALSE)
}
prd
}
|