File: calibration.Rd

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (137 lines) | stat: -rw-r--r-- 5,377 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/calibration.R
\name{calibration}
\alias{calibration}
\alias{calibration.formula}
\alias{calibration.default}
\alias{xyplot.calibration}
\alias{ggplot.calibration}
\alias{panel.calibration}
\alias{print.calibration}
\title{Probability Calibration Plot}
\usage{
calibration(x, ...)

\method{calibration}{default}(x, ...)

\method{calibration}{formula}(
  x,
  data = NULL,
  class = NULL,
  cuts = 11,
  subset = TRUE,
  lattice.options = NULL,
  ...
)

\method{print}{calibration}(x, ...)

\method{xyplot}{calibration}(x, data = NULL, ...)

\method{ggplot}{calibration}(data, ..., bwidth = 2, dwidth = 3)
}
\arguments{
\item{x}{a \code{lattice} formula (see \code{\link[lattice:xyplot]{xyplot}} for syntax) where the left
-hand side of the formula is a factor class variable of the observed outcome and the right-hand side
specifies one or model columns corresponding to a numeric ranking variable for a model (e.g. class
probabilities). The classification variable should have two levels.}

\item{\dots}{options to pass through to \code{\link[lattice:xyplot]{xyplot}} or the panel function (not
used in \code{calibration.formula}).}

\item{data}{For \code{calibration.formula}, a data frame (or more precisely, anything that is a valid
\code{envir} argument in \code{eval}, e.g., a list or an environment) containing values for any
variables in the formula, as well as \code{groups} and \code{subset} if applicable. If not found in
\code{data}, or if \code{data} is unspecified, the variables are looked for in the environment of the
formula. This argument is not used for \code{xyplot.calibration}. For \code{ggplot.calibration}, \code{data}
should be an object of class "\code{calibration}".}

\item{class}{a character string for the class of interest}

\item{cuts}{If a single number this indicates the number of splits of the data are used to create the
plot. By default, it uses as many cuts as there are rows in \code{data}. If a vector, these are the
actual cuts that will be used.}

\item{subset}{An expression that evaluates to a logical or integer indexing vector. It is evaluated in
\code{data}. Only the resulting rows of \code{data} are used for the plot.}

\item{lattice.options}{A list that could be supplied to \code{\link[lattice:lattice.options]{lattice.options}}}

\item{bwidth, dwidth}{a numeric value for the confidence interval bar width and dodge width, respectively.
In the latter case, a dodge is only used when multiple models are specified in the formula.}
}
\value{
\code{calibration.formula} returns a list with elements:
\item{data}{the data used for plotting}
\item{cuts}{the number of cuts}
\item{class}{the event class}
\item{probNames}{the names of the model probabilities}

\code{xyplot.calibration} returns a \pkg{lattice} object
}
\description{
For classification models, this function creates a 'calibration plot' that describes
how consistent model probabilities are with observed event rates.
}
\details{
\code{calibration.formula} is used to process the data and \code{xyplot.calibration} is used to create the plot.

To construct the calibration plot, the following steps are used for each model:

\enumerate{
   \item The data are split into \code{cuts - 1} roughly equal groups by their class probabilities
   \item the number of samples with true results equal to \code{class} are determined
   \item the event rate is determined for each bin}
\code{xyplot.calibration} produces a plot of the observed event rate by the mid-point of the bins.

This implementation uses the \pkg{lattice} function \code{\link[lattice:xyplot]{xyplot}}, so plot
elements can be changed via panel functions, \code{\link[lattice:trellis.par.get]{trellis.par.set}} or
other means. \code{calibration} uses the panel function \code{\link{panel.calibration}} by default, but
it can be changed by passing that argument into \code{xyplot.calibration}.

The following elements are set by default in the plot but can be changed by passing new values into
\code{xyplot.calibration}: \code{xlab = "Bin Midpoint"}, \code{ylab = "Observed Event Percentage"},
\code{type = "o"}, \code{ylim = extendrange(c(0, 100))},\code{xlim = extendrange(c(0, 100))} and
\code{panel = panel.calibration}

For the \code{ggplot} method, confidence intervals on the estimated proportions (from
\code{\link[stats]{binom.test}}) are also shown.
}
\examples{
\dontrun{
data(mdrr)
mdrrDescr <- mdrrDescr[, -nearZeroVar(mdrrDescr)]
mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .5)]


inTrain <- createDataPartition(mdrrClass)
trainX <- mdrrDescr[inTrain[[1]], ]
trainY <- mdrrClass[inTrain[[1]]]
testX <- mdrrDescr[-inTrain[[1]], ]
testY <- mdrrClass[-inTrain[[1]]]

library(MASS)

ldaFit <- lda(trainX, trainY)
qdaFit <- qda(trainX, trainY)

testProbs <- data.frame(obs = testY,
                        lda = predict(ldaFit, testX)$posterior[,1],
                        qda = predict(qdaFit, testX)$posterior[,1])

calibration(obs ~ lda + qda, data = testProbs)

calPlotData <- calibration(obs ~ lda + qda, data = testProbs)
calPlotData

xyplot(calPlotData, auto.key = list(columns = 2))
}

}
\seealso{
\code{\link[lattice:xyplot]{xyplot}}, \code{\link[lattice:trellis.par.get]{trellis.par.set}}
}
\author{
Max Kuhn, some \pkg{lattice} code and documentation by Deepayan Sarkar
}
\keyword{hplot}