1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/selectByFilter.R
\docType{data}
\name{caretSBF}
\alias{caretSBF}
\alias{lmSBF}
\alias{rfSBF}
\alias{treebagSBF}
\alias{ldaSBF}
\alias{nbSBF}
\alias{gamScores}
\alias{anovaScores}
\title{Selection By Filtering (SBF) Helper Functions}
\format{
An object of class \code{list} of length 5.
}
\usage{
caretSBF
anovaScores(x, y)
gamScores(x, y)
}
\arguments{
\item{x}{a matrix or data frame of numeric predictors}
\item{y}{a numeric or factor vector of outcomes}
}
\description{
Ancillary functions for univariate feature selection
}
\details{
More details on these functions can be found at
\url{http://topepo.github.io/caret/feature-selection-using-univariate-filters.html}.
This page documents the functions that are used in selection by filtering
(SBF). The functions described here are passed to the algorithm via the
\code{functions} argument of \code{\link{sbfControl}}.
See \code{\link{sbfControl}} for details on how these functions should be
defined.
\code{anovaScores} and \code{gamScores} are two examples of univariate
filtering functions. \code{anovaScores} fits a simple linear model between a
single feature and the outcome, then the p-value for the whole model F-test
is returned. \code{gamScores} fits a generalized additive model between a
single predictor and the outcome using a smoothing spline basis function. A
p-value is generated using the whole model test from
\code{\link[gam]{summary.Gam}} and is returned.
If a particular model fails for \code{lm} or \code{gam}, a p-value of 1 is
returned.
}
\seealso{
\code{\link{sbfControl}}, \code{\link{sbf}},
\code{\link[gam]{summary.Gam}}
}
\author{
Max Kuhn
}
\keyword{models}
|