1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/dummyVar.R
\name{dummyVars}
\alias{dummyVars}
\alias{dummyVars.default}
\alias{predict.dummyVars}
\alias{contr.dummy}
\alias{contr.ltfr}
\alias{class2ind}
\alias{print.dummyVars}
\title{Create A Full Set of Dummy Variables}
\usage{
dummyVars(formula, ...)
\method{dummyVars}{default}(formula, data, sep = ".", levelsOnly = FALSE, fullRank = FALSE, ...)
\method{print}{dummyVars}(x, ...)
\method{predict}{dummyVars}(object, newdata, na.action = na.pass, ...)
contr.ltfr(n, contrasts = TRUE, sparse = FALSE)
class2ind(x, drop2nd = FALSE)
}
\arguments{
\item{formula}{An appropriate R model formula, see References}
\item{...}{additional arguments to be passed to other methods}
\item{data}{A data frame with the predictors of interest}
\item{sep}{An optional separator between factor variable names and their
levels. Use \code{sep = NULL} for no separator (i.e. normal behavior of
\code{\link[stats]{model.matrix}} as shown in the Details section)}
\item{levelsOnly}{A logical; \code{TRUE} means to completely remove the
variable names from the column names}
\item{fullRank}{A logical; should a full rank or less than full rank
parameterization be used? If \code{TRUE}, factors are encoded to be
consistent with \code{\link[stats]{model.matrix}} and the resulting there
are no linear dependencies induced between the columns.}
\item{x}{A factor vector.}
\item{object}{An object of class \code{dummyVars}}
\item{newdata}{A data frame with the required columns}
\item{na.action}{A function determining what should be done with missing
values in \code{newdata}. The default is to predict \code{NA}.}
\item{n}{A vector of levels for a factor, or the number of levels.}
\item{contrasts}{A logical indicating whether contrasts should be computed.}
\item{sparse}{A logical indicating if the result should be sparse.}
\item{drop2nd}{A logical: if the factor has two levels, should a single binary vector be returned?}
}
\value{
The output of \code{dummyVars} is a list of class 'dummyVars' with
elements \item{call }{the function call} \item{form }{the model formula}
\item{vars }{names of all the variables in the model} \item{facVars }{names
of all the factor variables in the model} \item{lvls }{levels of any factor
variables} \item{sep }{\code{NULL} or a character separator} \item{terms
}{the \code{\link[stats]{terms.formula}} object} \item{levelsOnly }{a
logical}
The \code{predict} function produces a data frame.
\code{class2ind} returns a matrix (or a vector if \code{drop2nd = TRUE}).
\code{contr.ltfr} generates a design matrix.
}
\description{
\code{dummyVars} creates a full set of dummy variables (i.e. less than full
rank parameterization)
}
\details{
Most of the \code{\link[stats]{contrasts}} functions in R produce full rank
parameterizations of the predictor data. For example,
\code{\link[stats]{contr.treatment}} creates a reference cell in the data
and defines dummy variables for all factor levels except those in the
reference cell. For example, if a factor with 5 levels is used in a model
formula alone, \code{\link[stats]{contr.treatment}} creates columns for the
intercept and all the factor levels except the first level of the factor.
For the data in the Example section below, this would produce:
\preformatted{ (Intercept) dayTue dayWed dayThu dayFri daySat daySun
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 1 0
1 0 0 0 1 0 0}
In some situations, there may be a need for dummy variables for all the
levels of the factor. For the same example:
\preformatted{ dayMon dayTue dayWed dayThu dayFri daySat daySun
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0}
Given a formula and initial data set, the class \code{dummyVars} gathers all
the information needed to produce a full set of dummy variables for any data
set. It uses \code{contr.ltfr} as the base function to do this.
\code{class2ind} is most useful for converting a factor outcome vector to a
matrix (or vector) of dummy variables.
}
\examples{
when <- data.frame(time = c("afternoon", "night", "afternoon",
"morning", "morning", "morning",
"morning", "afternoon", "afternoon"),
day = c("Mon", "Mon", "Mon",
"Wed", "Wed", "Fri",
"Sat", "Sat", "Fri"),
stringsAsFactors = TRUE)
levels(when$time) <- list(morning="morning",
afternoon="afternoon",
night="night")
levels(when$day) <- list(Mon="Mon", Tue="Tue", Wed="Wed", Thu="Thu",
Fri="Fri", Sat="Sat", Sun="Sun")
## Default behavior:
model.matrix(~day, when)
mainEffects <- dummyVars(~ day + time, data = when)
mainEffects
predict(mainEffects, when[1:3,])
when2 <- when
when2[1, 1] <- NA
predict(mainEffects, when2[1:3,])
predict(mainEffects, when2[1:3,], na.action = na.omit)
interactionModel <- dummyVars(~ day + time + day:time,
data = when,
sep = ".")
predict(interactionModel, when[1:3,])
noNames <- dummyVars(~ day + time + day:time,
data = when,
levelsOnly = TRUE)
predict(noNames, when)
head(class2ind(iris$Species))
two_levels <- factor(rep(letters[1:2], each = 5))
class2ind(two_levels)
class2ind(two_levels, drop2nd = TRUE)
}
\references{
\url{https://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models}
}
\seealso{
\code{\link[stats]{model.matrix}}, \code{\link[stats]{contrasts}},
\code{\link[stats]{formula}}
}
\author{
\code{contr.ltfr} is a small modification of
\code{\link[stats]{contr.treatment}} by Max Kuhn
}
\keyword{models}
|