File: icr.formula.Rd

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (80 lines) | stat: -rw-r--r-- 2,484 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/icr.R
\name{icr.formula}
\alias{icr.formula}
\alias{icr.default}
\alias{icr}
\alias{predict.icr}
\title{Independent Component Regression}
\usage{
\method{icr}{formula}(formula, data, weights, ..., subset, na.action, contrasts = NULL)

\method{icr}{default}(x, y, ...)

\method{predict}{icr}(object, newdata, ...)
}
\arguments{
\item{formula}{A formula of the form \code{class ~ x1 + x2 + \dots{}}}

\item{data}{Data frame from which variables specified in \code{formula} are
preferentially to be taken.}

\item{weights}{(case) weights for each example - if missing defaults to 1.}

\item{\dots}{arguments passed to \code{\link[fastICA]{fastICA}}}

\item{subset}{An index vector specifying the cases to be used in the
training sample.  (NOTE: If given, this argument must be named.)}

\item{na.action}{A function to specify the action to be taken if \code{NA}s
are found. The default action is for the procedure to fail.  An alternative
is na.omit, which leads to rejection of cases with missing values on any
required variable.  (NOTE: If given, this argument must be named.)}

\item{contrasts}{a list of contrasts to be used for some or all of the
factors appearing as variables in the model formula.}

\item{x}{matrix or data frame of \code{x} values for examples.}

\item{y}{matrix or data frame of target values for examples.}

\item{object}{an object of class \code{icr} as returned by \code{icr}.}

\item{newdata}{matrix or data frame of test examples.}
}
\value{
For \code{icr}, a list with elements \item{model }{the results of
\code{\link[stats]{lm}} after the ICA transformation} \item{ica
}{pre-processing information} \item{n.comp }{number of ICA components}
\item{names }{column names of the original data}
}
\description{
Fit a linear regression model using independent components
}
\details{
This produces a model analogous to Principal Components Regression (PCR) but
uses Independent Component Analysis (ICA) to produce the scores. The user
must specify a value of \code{n.comp} to pass to
\code{\link[fastICA]{fastICA}}.

The function \code{\link{preProcess}} to produce the ICA scores for the
original data and for \code{newdata}.
}
\examples{

data(BloodBrain)

icrFit <- icr(bbbDescr, logBBB, n.comp = 5)

icrFit

predict(icrFit, bbbDescr[1:5,])
}
\seealso{
\code{\link[fastICA]{fastICA}}, \code{\link{preProcess}},
\code{\link[stats]{lm}}
}
\author{
Max Kuhn
}
\keyword{multivariate}