1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/icr.R
\name{icr.formula}
\alias{icr.formula}
\alias{icr.default}
\alias{icr}
\alias{predict.icr}
\title{Independent Component Regression}
\usage{
\method{icr}{formula}(formula, data, weights, ..., subset, na.action, contrasts = NULL)
\method{icr}{default}(x, y, ...)
\method{predict}{icr}(object, newdata, ...)
}
\arguments{
\item{formula}{A formula of the form \code{class ~ x1 + x2 + \dots{}}}
\item{data}{Data frame from which variables specified in \code{formula} are
preferentially to be taken.}
\item{weights}{(case) weights for each example - if missing defaults to 1.}
\item{\dots}{arguments passed to \code{\link[fastICA]{fastICA}}}
\item{subset}{An index vector specifying the cases to be used in the
training sample. (NOTE: If given, this argument must be named.)}
\item{na.action}{A function to specify the action to be taken if \code{NA}s
are found. The default action is for the procedure to fail. An alternative
is na.omit, which leads to rejection of cases with missing values on any
required variable. (NOTE: If given, this argument must be named.)}
\item{contrasts}{a list of contrasts to be used for some or all of the
factors appearing as variables in the model formula.}
\item{x}{matrix or data frame of \code{x} values for examples.}
\item{y}{matrix or data frame of target values for examples.}
\item{object}{an object of class \code{icr} as returned by \code{icr}.}
\item{newdata}{matrix or data frame of test examples.}
}
\value{
For \code{icr}, a list with elements \item{model }{the results of
\code{\link[stats]{lm}} after the ICA transformation} \item{ica
}{pre-processing information} \item{n.comp }{number of ICA components}
\item{names }{column names of the original data}
}
\description{
Fit a linear regression model using independent components
}
\details{
This produces a model analogous to Principal Components Regression (PCR) but
uses Independent Component Analysis (ICA) to produce the scores. The user
must specify a value of \code{n.comp} to pass to
\code{\link[fastICA]{fastICA}}.
The function \code{\link{preProcess}} to produce the ICA scores for the
original data and for \code{newdata}.
}
\examples{
data(BloodBrain)
icrFit <- icr(bbbDescr, logBBB, n.comp = 5)
icrFit
predict(icrFit, bbbDescr[1:5,])
}
\seealso{
\code{\link[fastICA]{fastICA}}, \code{\link{preProcess}},
\code{\link[stats]{lm}}
}
\author{
Max Kuhn
}
\keyword{multivariate}
|