1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/lift.R
\name{lift}
\alias{lift}
\alias{lift.formula}
\alias{lift.default}
\alias{xyplot.lift}
\alias{print.lift}
\alias{ggplot.lift}
\title{Lift Plot}
\usage{
lift(x, ...)
\method{lift}{default}(x, ...)
\method{lift}{formula}(
x,
data = NULL,
class = NULL,
subset = TRUE,
lattice.options = NULL,
cuts = NULL,
labels = NULL,
...
)
\method{print}{lift}(x, ...)
\method{xyplot}{lift}(x, data = NULL, plot = "gain", values = NULL, ...)
\method{ggplot}{lift}(
data = NULL,
mapping = NULL,
plot = "gain",
values = NULL,
...,
environment = NULL
)
}
\arguments{
\item{x}{a \code{lattice} formula (see \code{\link[lattice:xyplot]{xyplot}}
for syntax) where the left-hand side of the formula is a factor class
variable of the observed outcome and the right-hand side specifies one or
model columns corresponding to a numeric ranking variable for a model (e.g.
class probabilities). The classification variable should have two levels.}
\item{\dots}{options to pass through to \code{\link[lattice:xyplot]{xyplot}}
or the panel function (not used in \code{lift.formula}).}
\item{data}{For \code{lift.formula}, a data frame (or more precisely,
anything that is a valid \code{envir} argument in \code{eval}, e.g., a list
or an environment) containing values for any variables in the formula, as
well as \code{groups} and \code{subset} if applicable. If not found in
\code{data}, or if \code{data} is unspecified, the variables are looked for
in the environment of the formula. This argument is not used for
\code{xyplot.lift} or \code{ggplot.lift}.}
\item{class}{a character string for the class of interest}
\item{subset}{An expression that evaluates to a logical or integer indexing
vector. It is evaluated in \code{data}. Only the resulting rows of
\code{data} are used for the plot.}
\item{lattice.options}{A list that could be supplied to
\code{\link[lattice:lattice.options]{lattice.options}}}
\item{cuts}{If a single value is given, a sequence of values between 0 and 1
are created with length \code{cuts}. If a vector, these values are used as
the cuts. If \code{NULL}, each unique value of the model prediction is used.
This is helpful when the data set is large.}
\item{labels}{A named list of labels for keys. The list should have an
element for each term on the right-hand side of the formula and the names
should match the names of the models.}
\item{plot}{Either "gain" (the default) or "lift". The former plots the
number of samples called events versus the event rate while the latter shows
the event cut-off versus the lift statistic.}
\item{values}{A vector of numbers between 0 and 100 specifying reference
values for the percentage of samples found (i.e. the y-axis). Corresponding
points on the x-axis are found via interpolation and line segments are shown
to indicate how many samples must be tested before these percentages are
found. The lines use either the \code{plot.line} or \code{superpose.line}
component of the current lattice theme to draw the lines (depending on
whether groups were used. These values are only used when \code{type =
"gain"}.}
\item{mapping, environment}{Not used (required for \code{ggplot} consistency).}
}
\value{
\code{lift.formula} returns a list with elements: \item{data}{the
data used for plotting} \item{cuts}{the number of cuts} \item{class}{the
event class} \item{probNames}{the names of the model probabilities}
\item{pct}{the baseline event rate}
\code{xyplot.lift} returns a \pkg{lattice} object
}
\description{
For classification models, this function creates a 'lift plot' that
describes how well a model ranks samples for one class
}
\details{
\code{lift.formula} is used to process the data and \code{xyplot.lift} is
used to create the plot.
To construct data for the the lift and gain plots, the following steps are
used for each model:
\enumerate{ \item The data are ordered by the numeric model prediction used
on the right-hand side of the model formula \item Each unique value of the
score is treated as a cut point \item The number of samples with true
results equal to \code{class} are determined \item The lift is calculated as
the ratio of the percentage of samples in each split corresponding to
\code{class} over the same percentage in the entire data set} \code{lift}
with \code{plot = "gain"} produces a plot of the cumulative lift values by
the percentage of samples evaluated while \code{plot = "lift"} shows the cut
point value versus the lift statistic.
This implementation uses the \pkg{lattice} function
\code{\link[lattice:xyplot]{xyplot}}, so plot elements can be changed via
panel functions, \code{\link[lattice:trellis.par.get]{trellis.par.set}} or
other means. \code{lift} uses the panel function \code{\link{panel.lift2}}
by default, but it can be changes using
\code{\link[lattice:update.trellis]{update.trellis}} (see the examples in
\code{\link{panel.lift2}}).
The following elements are set by default in the plot but can be changed by
passing new values into \code{xyplot.lift}: \code{xlab = "\% Samples
Tested"}, \code{ylab = "\% Samples Found"}, \code{type = "S"}, \code{ylim =
extendrange(c(0, 100))} and \code{xlim = extendrange(c(0, 100))}.
}
\examples{
set.seed(1)
simulated <- data.frame(obs = factor(rep(letters[1:2], each = 100)),
perfect = sort(runif(200), decreasing = TRUE),
random = runif(200))
lift1 <- lift(obs ~ random, data = simulated)
lift1
xyplot(lift1)
lift2 <- lift(obs ~ random + perfect, data = simulated)
lift2
xyplot(lift2, auto.key = list(columns = 2))
xyplot(lift2, auto.key = list(columns = 2), value = c(10, 30))
xyplot(lift2, plot = "lift", auto.key = list(columns = 2))
}
\seealso{
\code{\link[lattice:xyplot]{xyplot}},
\code{\link[lattice:trellis.par.get]{trellis.par.set}}
}
\author{
Max Kuhn, some \pkg{lattice} code and documentation by Deepayan
Sarkar
}
\keyword{hplot}
|