1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
|
\name{train_model_list}
\alias{train_model_list}
\alias{models}
\title{A List of Available Models in train}
\description{These models are included in the package via wrappers for \code{\link{train}}. Custom models can also be created. See the URL below.
\strong{AdaBoost Classification Trees} (\code{method = 'adaboost'})
For classification using package \pkg{fastAdaboost} with tuning parameters:
\itemize{
\item Number of Trees (\code{nIter}, numeric)
\item Method (\code{method}, character)
}
\strong{AdaBoost.M1} (\code{method = 'AdaBoost.M1'})
For classification using packages \pkg{adabag} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Trees (\code{mfinal}, numeric)
\item Max Tree Depth (\code{maxdepth}, numeric)
\item Coefficient Type (\code{coeflearn}, character)
}
\strong{Adaptive Mixture Discriminant Analysis} (\code{method = 'amdai'})
For classification using package \pkg{adaptDA} with tuning parameters:
\itemize{
\item Model Type (\code{model}, character)
}
\strong{Adaptive-Network-Based Fuzzy Inference System} (\code{method = 'ANFIS'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Number of Fuzzy Terms (\code{num.labels}, numeric)
\item Max. Iterations (\code{max.iter}, numeric)
}
\strong{Adjacent Categories Probability Model for Ordinal Data} (\code{method = 'vglmAdjCat'})
For classification using package \pkg{VGAM} with tuning parameters:
\itemize{
\item Parallel Curves (\code{parallel}, logical)
\item Link Function (\code{link}, character)
}
\strong{Bagged AdaBoost} (\code{method = 'AdaBag'})
For classification using packages \pkg{adabag} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Trees (\code{mfinal}, numeric)
\item Max Tree Depth (\code{maxdepth}, numeric)
}
\strong{Bagged CART} (\code{method = 'treebag'})
For classification and regression using packages \pkg{ipred}, \pkg{plyr} and \pkg{e1071} with no tuning parameters.
\strong{Bagged FDA using gCV Pruning} (\code{method = 'bagFDAGCV'})
For classification using package \pkg{earth} with tuning parameters:
\itemize{
\item Product Degree (\code{degree}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{earth} package is fully loaded when this model is used.
\strong{Bagged Flexible Discriminant Analysis} (\code{method = 'bagFDA'})
For classification using packages \pkg{earth} and \pkg{mda} with tuning parameters:
\itemize{
\item Product Degree (\code{degree}, numeric)
\item Number of Terms (\code{nprune}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{earth} package is fully loaded when this model is used.
\strong{Bagged Logic Regression} (\code{method = 'logicBag'})
For classification and regression using package \pkg{logicFS} with tuning parameters:
\itemize{
\item Maximum Number of Leaves (\code{nleaves}, numeric)
\item Number of Trees (\code{ntrees}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{logicFS} package is fully loaded when this model is used.
\strong{Bagged MARS} (\code{method = 'bagEarth'})
For classification and regression using package \pkg{earth} with tuning parameters:
\itemize{
\item Number of Terms (\code{nprune}, numeric)
\item Product Degree (\code{degree}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{earth} package is fully loaded when this model is used.
\strong{Bagged MARS using gCV Pruning} (\code{method = 'bagEarthGCV'})
For classification and regression using package \pkg{earth} with tuning parameters:
\itemize{
\item Product Degree (\code{degree}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{earth} package is fully loaded when this model is used.
\strong{Bagged Model} (\code{method = 'bag'})
For classification and regression using package \pkg{caret} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{vars}, numeric)
}
\strong{Bayesian Additive Regression Trees} (\code{method = 'bartMachine'})
For classification and regression using package \pkg{bartMachine} with tuning parameters:
\itemize{
\item Number of Trees (\code{num_trees}, numeric)
\item Prior Boundary (\code{k}, numeric)
\item Base Terminal Node Hyperparameter (\code{alpha}, numeric)
\item Power Terminal Node Hyperparameter (\code{beta}, numeric)
\item Degrees of Freedom (\code{nu}, numeric)
}
\strong{Bayesian Generalized Linear Model} (\code{method = 'bayesglm'})
For classification and regression using package \pkg{arm} with no tuning parameters.
\strong{Bayesian Regularized Neural Networks} (\code{method = 'brnn'})
For regression using package \pkg{brnn} with tuning parameters:
\itemize{
\item Number of Neurons (\code{neurons}, numeric)
}
\strong{Bayesian Ridge Regression} (\code{method = 'bridge'})
For regression using package \pkg{monomvn} with no tuning parameters.
\strong{Bayesian Ridge Regression (Model Averaged)} (\code{method = 'blassoAveraged'})
For regression using package \pkg{monomvn} with no tuning parameters.
Note: This model makes predictions by averaging the predictions based on the posterior estimates of the regression coefficients. While it is possible that some of these posterior estimates are zero for non-informative predictors, the final predicted value may be a function of many (or even all) predictors.
\strong{Binary Discriminant Analysis} (\code{method = 'binda'})
For classification using package \pkg{binda} with tuning parameters:
\itemize{
\item Shrinkage Intensity (\code{lambda.freqs}, numeric)
}
\strong{Boosted Classification Trees} (\code{method = 'ada'})
For classification using packages \pkg{ada} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Trees (\code{iter}, numeric)
\item Max Tree Depth (\code{maxdepth}, numeric)
\item Learning Rate (\code{nu}, numeric)
}
\strong{Boosted Generalized Additive Model} (\code{method = 'gamboost'})
For classification and regression using packages \pkg{mboost}, \pkg{plyr} and \pkg{import} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{mstop}, numeric)
\item AIC Prune? (\code{prune}, character)
}
Note: The \code{prune} option for this model enables the number of iterations to be determined by the optimal AIC value across all iterations. See the examples in \code{?mboost::mstop}. If pruning is not used, the ensemble makes predictions using the exact value of the \code{mstop} tuning parameter value.
\strong{Boosted Generalized Linear Model} (\code{method = 'glmboost'})
For classification and regression using packages \pkg{plyr} and \pkg{mboost} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{mstop}, numeric)
\item AIC Prune? (\code{prune}, character)
}
Note: The \code{prune} option for this model enables the number of iterations to be determined by the optimal AIC value across all iterations. See the examples in \code{?mboost::mstop}. If pruning is not used, the ensemble makes predictions using the exact value of the \code{mstop} tuning parameter value.
\strong{Boosted Linear Model} (\code{method = 'BstLm'})
For classification and regression using packages \pkg{bst} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{mstop}, numeric)
\item Shrinkage (\code{nu}, numeric)
}
\strong{Boosted Logistic Regression} (\code{method = 'LogitBoost'})
For classification using package \pkg{caTools} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{nIter}, numeric)
}
\strong{Boosted Smoothing Spline} (\code{method = 'bstSm'})
For classification and regression using packages \pkg{bst} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{mstop}, numeric)
\item Shrinkage (\code{nu}, numeric)
}
\strong{Boosted Tree} (\code{method = 'blackboost'})
For classification and regression using packages \pkg{party}, \pkg{mboost} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Trees (\code{mstop}, numeric)
\item Max Tree Depth (\code{maxdepth}, numeric)
}
\strong{Boosted Tree} (\code{method = 'bstTree'})
For classification and regression using packages \pkg{bst} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{mstop}, numeric)
\item Max Tree Depth (\code{maxdepth}, numeric)
\item Shrinkage (\code{nu}, numeric)
}
\strong{C4.5-like Trees} (\code{method = 'J48'})
For classification using package \pkg{RWeka} with tuning parameters:
\itemize{
\item Confidence Threshold (\code{C}, numeric)
\item Minimum Instances Per Leaf (\code{M}, numeric)
}
\strong{C5.0} (\code{method = 'C5.0'})
For classification using packages \pkg{C50} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{trials}, numeric)
\item Model Type (\code{model}, character)
\item Winnow (\code{winnow}, logical)
}
\strong{CART} (\code{method = 'rpart'})
For classification and regression using package \pkg{rpart} with tuning parameters:
\itemize{
\item Complexity Parameter (\code{cp}, numeric)
}
\strong{CART} (\code{method = 'rpart1SE'})
For classification and regression using package \pkg{rpart} with no tuning parameters.
Note: This CART model replicates the same process used by the \code{rpart} function where the model complexity is determined using the one-standard error method. This procedure is replicated inside of the resampling done by \code{train} so that an external resampling estimate can be obtained.
\strong{CART} (\code{method = 'rpart2'})
For classification and regression using package \pkg{rpart} with tuning parameters:
\itemize{
\item Max Tree Depth (\code{maxdepth}, numeric)
}
\strong{CART or Ordinal Responses} (\code{method = 'rpartScore'})
For classification using packages \pkg{rpartScore} and \pkg{plyr} with tuning parameters:
\itemize{
\item Complexity Parameter (\code{cp}, numeric)
\item Split Function (\code{split}, character)
\item Pruning Measure (\code{prune}, character)
}
\strong{CHi-squared Automated Interaction Detection} (\code{method = 'chaid'})
For classification using package \pkg{CHAID} with tuning parameters:
\itemize{
\item Merging Threshold (\code{alpha2}, numeric)
\item Splitting former Merged Threshold (\code{alpha3}, numeric)
\item
Splitting former Merged Threshold (\code{alpha4}, numeric)
}
\strong{Conditional Inference Random Forest} (\code{method = 'cforest'})
For classification and regression using package \pkg{party} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
\strong{Conditional Inference Tree} (\code{method = 'ctree'})
For classification and regression using package \pkg{party} with tuning parameters:
\itemize{
\item 1 - P-Value Threshold (\code{mincriterion}, numeric)
}
\strong{Conditional Inference Tree} (\code{method = 'ctree2'})
For classification and regression using package \pkg{party} with tuning parameters:
\itemize{
\item Max Tree Depth (\code{maxdepth}, numeric)
\item 1 - P-Value Threshold (\code{mincriterion}, numeric)
}
\strong{Continuation Ratio Model for Ordinal Data} (\code{method = 'vglmContRatio'})
For classification using package \pkg{VGAM} with tuning parameters:
\itemize{
\item Parallel Curves (\code{parallel}, logical)
\item Link Function (\code{link}, character)
}
\strong{Cost-Sensitive C5.0} (\code{method = 'C5.0Cost'})
For classification using packages \pkg{C50} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{trials}, numeric)
\item Model Type (\code{model}, character)
\item Winnow (\code{winnow}, logical)
\item Cost (\code{cost}, numeric)
}
\strong{Cost-Sensitive CART} (\code{method = 'rpartCost'})
For classification using packages \pkg{rpart} and \pkg{plyr} with tuning parameters:
\itemize{
\item Complexity Parameter (\code{cp}, numeric)
\item Cost (\code{Cost}, numeric)
}
\strong{Cubist} (\code{method = 'cubist'})
For regression using package \pkg{Cubist} with tuning parameters:
\itemize{
\item Number of Committees (\code{committees}, numeric)
\item Number of Instances (\code{neighbors}, numeric)
}
\strong{Cumulative Probability Model for Ordinal Data} (\code{method = 'vglmCumulative'})
For classification using package \pkg{VGAM} with tuning parameters:
\itemize{
\item Parallel Curves (\code{parallel}, logical)
\item Link Function (\code{link}, character)
}
\strong{DeepBoost} (\code{method = 'deepboost'})
For classification using package \pkg{deepboost} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{num_iter}, numeric)
\item Tree Depth (\code{tree_depth}, numeric)
\item L1 Regularization (\code{beta}, numeric)
\item Tree Depth Regularization (\code{lambda}, numeric)
\item Loss (\code{loss_type}, character)
}
\strong{Diagonal Discriminant Analysis} (\code{method = 'dda'})
For classification using package \pkg{sparsediscrim} with tuning parameters:
\itemize{
\item Model (\code{model}, character)
\item Shrinkage Type (\code{shrinkage}, character)
}
\strong{Distance Weighted Discrimination with Polynomial Kernel} (\code{method = 'dwdPoly'})
For classification using package \pkg{kerndwd} with tuning parameters:
\itemize{
\item Regularization Parameter (\code{lambda}, numeric)
\item q (\code{qval}, numeric)
\item Polynomial Degree (\code{degree}, numeric)
\item Scale (\code{scale}, numeric)
}
\strong{Distance Weighted Discrimination with Radial Basis Function Kernel} (\code{method = 'dwdRadial'})
For classification using packages \pkg{kernlab} and \pkg{kerndwd} with tuning parameters:
\itemize{
\item Regularization Parameter (\code{lambda}, numeric)
\item q (\code{qval}, numeric)
\item Sigma (\code{sigma}, numeric)
}
\strong{Dynamic Evolving Neural-Fuzzy Inference System } (\code{method = 'DENFIS'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Threshold (\code{Dthr}, numeric)
\item Max. Iterations (\code{max.iter}, numeric)
}
\strong{Elasticnet} (\code{method = 'enet'})
For regression using package \pkg{elasticnet} with tuning parameters:
\itemize{
\item Fraction of Full Solution (\code{fraction}, numeric)
\item Weight Decay (\code{lambda}, numeric)
}
\strong{Ensembles of Generalized Linear Models} (\code{method = 'randomGLM'})
For classification and regression using package \pkg{randomGLM} with tuning parameters:
\itemize{
\item Interaction Order (\code{maxInteractionOrder}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{randomGLM} package is fully loaded when this model is used.
\strong{eXtreme Gradient Boosting} (\code{method = 'xgbDART'})
For classification and regression using packages \pkg{xgboost} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{nrounds}, numeric)
\item Max Tree Depth (\code{max_depth}, numeric)
\item Shrinkage (\code{eta}, numeric)
\item Minimum Loss Reduction (\code{gamma}, numeric)
\item Subsample Percentage (\code{subsample}, numeric)
\item Subsample Ratio of Columns (\code{colsample_bytree}, numeric)
\item Fraction of Trees Dropped (\code{rate_drop}, numeric)
\item Prob. of Skipping Drop-out (\code{skip_drop}, numeric)
\item Minimum Sum of Instance Weight (\code{min_child_weight}, numeric)
}
\strong{eXtreme Gradient Boosting} (\code{method = 'xgbLinear'})
For classification and regression using package \pkg{xgboost} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{nrounds}, numeric)
\item L2 Regularization (\code{lambda}, numeric)
\item L1 Regularization (\code{alpha}, numeric)
\item Learning Rate (\code{eta}, numeric)
}
\strong{eXtreme Gradient Boosting} (\code{method = 'xgbTree'})
For classification and regression using packages \pkg{xgboost} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{nrounds}, numeric)
\item Max Tree Depth (\code{max_depth}, numeric)
\item Shrinkage (\code{eta}, numeric)
\item Minimum Loss Reduction (\code{gamma}, numeric)
\item Subsample Ratio of Columns (\code{colsample_bytree}, numeric)
\item Minimum Sum of Instance Weight (\code{min_child_weight}, numeric)
\item Subsample Percentage (\code{subsample}, numeric)
}
\strong{Extreme Learning Machine} (\code{method = 'elm'})
For classification and regression using package \pkg{elmNN} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{nhid}, numeric)
\item Activation Function (\code{actfun}, character)
}
\strong{Factor-Based Linear Discriminant Analysis} (\code{method = 'RFlda'})
For classification using package \pkg{HiDimDA} with tuning parameters:
\itemize{
\item Number of Factors (\code{q}, numeric)
}
\strong{Flexible Discriminant Analysis} (\code{method = 'fda'})
For classification using packages \pkg{earth} and \pkg{mda} with tuning parameters:
\itemize{
\item Product Degree (\code{degree}, numeric)
\item Number of Terms (\code{nprune}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{earth} package is fully loaded when this model is used.
\strong{Fuzzy Inference Rules by Descent Method} (\code{method = 'FIR.DM'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Number of Fuzzy Terms (\code{num.labels}, numeric)
\item Max. Iterations (\code{max.iter}, numeric)
}
\strong{Fuzzy Rules Using Chi's Method} (\code{method = 'FRBCS.CHI'})
For classification using package \pkg{frbs} with tuning parameters:
\itemize{
\item Number of Fuzzy Terms (\code{num.labels}, numeric)
\item Membership Function (\code{type.mf}, character)
}
\strong{Fuzzy Rules Using Genetic Cooperative-Competitive Learning and Pittsburgh} (\code{method = 'FH.GBML'})
For classification using package \pkg{frbs} with tuning parameters:
\itemize{
\item Max. Number of Rules (\code{max.num.rule}, numeric)
\item Population Size (\code{popu.size}, numeric)
\item Max. Generations (\code{max.gen}, numeric)
}
\strong{Fuzzy Rules Using the Structural Learning Algorithm on Vague Environment} (\code{method = 'SLAVE'})
For classification using package \pkg{frbs} with tuning parameters:
\itemize{
\item Number of Fuzzy Terms (\code{num.labels}, numeric)
\item Max. Iterations (\code{max.iter}, numeric)
\item Max. Generations (\code{max.gen}, numeric)
}
\strong{Fuzzy Rules via MOGUL} (\code{method = 'GFS.FR.MOGUL'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Max. Generations (\code{max.gen}, numeric)
\item Max. Iterations (\code{max.iter}, numeric)
\item Max. Tuning Iterations (\code{max.tune}, numeric)
}
\strong{Fuzzy Rules via Thrift} (\code{method = 'GFS.THRIFT'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Population Size (\code{popu.size}, numeric)
\item Number of Fuzzy Labels (\code{num.labels}, numeric)
\item Max. Generations (\code{max.gen}, numeric)
}
\strong{Fuzzy Rules with Weight Factor} (\code{method = 'FRBCS.W'})
For classification using package \pkg{frbs} with tuning parameters:
\itemize{
\item Number of Fuzzy Terms (\code{num.labels}, numeric)
\item Membership Function (\code{type.mf}, character)
}
\strong{Gaussian Process} (\code{method = 'gaussprLinear'})
For classification and regression using package \pkg{kernlab} with no tuning parameters.
\strong{Gaussian Process with Polynomial Kernel} (\code{method = 'gaussprPoly'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Polynomial Degree (\code{degree}, numeric)
\item Scale (\code{scale}, numeric)
}
\strong{Gaussian Process with Radial Basis Function Kernel} (\code{method = 'gaussprRadial'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Sigma (\code{sigma}, numeric)
}
\strong{Generalized Additive Model using LOESS} (\code{method = 'gamLoess'})
For classification and regression using package \pkg{gam} with tuning parameters:
\itemize{
\item Span (\code{span}, numeric)
\item Degree (\code{degree}, numeric)
}
Note: Which terms enter the model in a nonlinear manner is determined by the number of unique values for the predictor. For example, if a predictor only has four unique values, most basis expansion method will fail because there are not enough granularity in the data. By default, a predictor must have at least 10 unique values to be used in a nonlinear basis expansion. Unlike other packages used by \code{train}, the \code{gam} package is fully loaded when this model is used.
\strong{Generalized Additive Model using Splines} (\code{method = 'bam'})
For classification and regression using package \pkg{mgcv} with tuning parameters:
\itemize{
\item Feature Selection (\code{select}, logical)
\item Method (\code{method}, character)
}
Note: Which terms enter the model in a nonlinear manner is determined by the number of unique values for the predictor. For example, if a predictor only has four unique values, most basis expansion method will fail because there are not enough granularity in the data. By default, a predictor must have at least 10 unique values to be used in a nonlinear basis expansion. Unlike other packages used by \code{train}, the \code{mgcv} package is fully loaded when this model is used.
\strong{Generalized Additive Model using Splines} (\code{method = 'gam'})
For classification and regression using package \pkg{mgcv} with tuning parameters:
\itemize{
\item Feature Selection (\code{select}, logical)
\item Method (\code{method}, character)
}
Note: Which terms enter the model in a nonlinear manner is determined by the number of unique values for the predictor. For example, if a predictor only has four unique values, most basis expansion method will fail because there are not enough granularity in the data. By default, a predictor must have at least 10 unique values to be used in a nonlinear basis expansion. Unlike other packages used by \code{train}, the \code{mgcv} package is fully loaded when this model is used.
\strong{Generalized Additive Model using Splines} (\code{method = 'gamSpline'})
For classification and regression using package \pkg{gam} with tuning parameters:
\itemize{
\item Degrees of Freedom (\code{df}, numeric)
}
Note: Which terms enter the model in a nonlinear manner is determined by the number of unique values for the predictor. For example, if a predictor only has four unique values, most basis expansion method will fail because there are not enough granularity in the data. By default, a predictor must have at least 10 unique values to be used in a nonlinear basis expansion. Unlike other packages used by \code{train}, the \code{gam} package is fully loaded when this model is used.
\strong{Generalized Linear Model} (\code{method = 'glm'})
For classification and regression with no tuning parameters.
\strong{Generalized Linear Model with Stepwise Feature Selection} (\code{method = 'glmStepAIC'})
For classification and regression using package \pkg{MASS} with no tuning parameters.
\strong{Generalized Partial Least Squares} (\code{method = 'gpls'})
For classification using package \pkg{gpls} with tuning parameters:
\itemize{
\item Number of Components (\code{K.prov}, numeric)
}
\strong{Genetic Lateral Tuning and Rule Selection of Linguistic Fuzzy Systems} (\code{method = 'GFS.LT.RS'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Population Size (\code{popu.size}, numeric)
\item Number of Fuzzy Labels (\code{num.labels}, numeric)
\item Max. Generations (\code{max.gen}, numeric)
}
\strong{glmnet} (\code{method = 'glmnet_h2o'})
For classification and regression using package \pkg{h2o} with tuning parameters:
\itemize{
\item Mixing Percentage (\code{alpha}, numeric)
\item Regularization Parameter (\code{lambda}, numeric)
}
\strong{glmnet} (\code{method = 'glmnet'})
For classification and regression using packages \pkg{glmnet} and \pkg{Matrix} with tuning parameters:
\itemize{
\item Mixing Percentage (\code{alpha}, numeric)
\item Regularization Parameter (\code{lambda}, numeric)
}
\strong{Gradient Boosting Machines} (\code{method = 'gbm_h2o'})
For classification and regression using package \pkg{h2o} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{ntrees}, numeric)
\item Max Tree Depth (\code{max_depth}, numeric)
\item Min. Terminal Node Size (\code{min_rows}, numeric)
\item Shrinkage (\code{learn_rate}, numeric)
\item Number of Randomly Selected Predictors (\code{col_sample_rate}, numeric)
}
\strong{Greedy Prototype Selection} (\code{method = 'protoclass'})
For classification using packages \pkg{proxy} and \pkg{protoclass} with tuning parameters:
\itemize{
\item Ball Size (\code{eps}, numeric)
\item Distance Order (\code{Minkowski}, numeric)
}
\strong{Heteroscedastic Discriminant Analysis} (\code{method = 'hda'})
For classification using package \pkg{hda} with tuning parameters:
\itemize{
\item Gamma (\code{gamma}, numeric)
\item Lambda (\code{lambda}, numeric)
\item Dimension of the Discriminative Subspace (\code{newdim}, numeric)
}
\strong{High Dimensional Discriminant Analysis} (\code{method = 'hdda'})
For classification using package \pkg{HDclassif} with tuning parameters:
\itemize{
\item Threshold (\code{threshold}, character)
\item Model Type (\code{model}, numeric)
}
\strong{High-Dimensional Regularized Discriminant Analysis} (\code{method = 'hdrda'})
For classification using package \pkg{sparsediscrim} with tuning parameters:
\itemize{
\item Gamma (\code{gamma}, numeric)
\item Lambda (\code{lambda}, numeric)
\item Shrinkage Type (\code{shrinkage_type}, character)
}
\strong{Hybrid Neural Fuzzy Inference System} (\code{method = 'HYFIS'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Number of Fuzzy Terms (\code{num.labels}, numeric)
\item Max. Iterations (\code{max.iter}, numeric)
}
\strong{Independent Component Regression} (\code{method = 'icr'})
For regression using package \pkg{fastICA} with tuning parameters:
\itemize{
\item Number of Components (\code{n.comp}, numeric)
}
\strong{k-Nearest Neighbors} (\code{method = 'kknn'})
For classification and regression using package \pkg{kknn} with tuning parameters:
\itemize{
\item Max. Number of Neighbors (\code{kmax}, numeric)
\item Distance (\code{distance}, numeric)
\item Kernel (\code{kernel}, character)
}
\strong{k-Nearest Neighbors} (\code{method = 'knn'})
For classification and regression with tuning parameters:
\itemize{
\item Number of Neighbors (\code{k}, numeric)
}
\strong{L2 Regularized Linear Support Vector Machines with Class Weights} (\code{method = 'svmLinearWeights2'})
For classification using package \pkg{LiblineaR} with tuning parameters:
\itemize{
\item Cost (\code{cost}, numeric)
\item Loss Function (\code{Loss}, character)
\item Class Weight (\code{weight}, numeric)
}
\strong{L2 Regularized Support Vector Machine (dual) with Linear Kernel} (\code{method = 'svmLinear3'})
For classification and regression using package \pkg{LiblineaR} with tuning parameters:
\itemize{
\item Cost (\code{cost}, numeric)
\item Loss Function (\code{Loss}, character)
}
\strong{Learning Vector Quantization} (\code{method = 'lvq'})
For classification using package \pkg{class} with tuning parameters:
\itemize{
\item Codebook Size (\code{size}, numeric)
\item Number of Prototypes (\code{k}, numeric)
}
\strong{Least Angle Regression} (\code{method = 'lars'})
For regression using package \pkg{lars} with tuning parameters:
\itemize{
\item Fraction (\code{fraction}, numeric)
}
\strong{Least Angle Regression} (\code{method = 'lars2'})
For regression using package \pkg{lars} with tuning parameters:
\itemize{
\item Number of Steps (\code{step}, numeric)
}
\strong{Least Squares Support Vector Machine} (\code{method = 'lssvmLinear'})
For classification using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Regularization Parameter (\code{tau}, numeric)
}
\strong{Least Squares Support Vector Machine with Polynomial Kernel} (\code{method = 'lssvmPoly'})
For classification using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Polynomial Degree (\code{degree}, numeric)
\item Scale (\code{scale}, numeric)
\item Regularization Parameter (\code{tau}, numeric)
}
\strong{Least Squares Support Vector Machine with Radial Basis Function Kernel} (\code{method = 'lssvmRadial'})
For classification using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Sigma (\code{sigma}, numeric)
\item Regularization Parameter (\code{tau}, numeric)
}
\strong{Linear Discriminant Analysis} (\code{method = 'lda'})
For classification using package \pkg{MASS} with no tuning parameters.
\strong{Linear Discriminant Analysis} (\code{method = 'lda2'})
For classification using package \pkg{MASS} with tuning parameters:
\itemize{
\item Number of Discriminant Functions (\code{dimen}, numeric)
}
\strong{Linear Discriminant Analysis with Stepwise Feature Selection} (\code{method = 'stepLDA'})
For classification using packages \pkg{klaR} and \pkg{MASS} with tuning parameters:
\itemize{
\item Maximum Number of Variables (\code{maxvar}, numeric)
\item Search Direction (\code{direction}, character)
}
\strong{Linear Distance Weighted Discrimination} (\code{method = 'dwdLinear'})
For classification using package \pkg{kerndwd} with tuning parameters:
\itemize{
\item Regularization Parameter (\code{lambda}, numeric)
\item q (\code{qval}, numeric)
}
\strong{Linear Regression} (\code{method = 'lm'})
For regression with tuning parameters:
\itemize{
\item intercept (\code{intercept}, logical)
}
\strong{Linear Regression with Backwards Selection} (\code{method = 'leapBackward'})
For regression using package \pkg{leaps} with tuning parameters:
\itemize{
\item Maximum Number of Predictors (\code{nvmax}, numeric)
}
\strong{Linear Regression with Forward Selection} (\code{method = 'leapForward'})
For regression using package \pkg{leaps} with tuning parameters:
\itemize{
\item Maximum Number of Predictors (\code{nvmax}, numeric)
}
\strong{Linear Regression with Stepwise Selection} (\code{method = 'leapSeq'})
For regression using package \pkg{leaps} with tuning parameters:
\itemize{
\item Maximum Number of Predictors (\code{nvmax}, numeric)
}
\strong{Linear Regression with Stepwise Selection} (\code{method = 'lmStepAIC'})
For regression using package \pkg{MASS} with no tuning parameters.
\strong{Linear Support Vector Machines with Class Weights} (\code{method = 'svmLinearWeights'})
For classification using package \pkg{e1071} with tuning parameters:
\itemize{
\item Cost (\code{cost}, numeric)
\item Class Weight (\code{weight}, numeric)
}
\strong{Localized Linear Discriminant Analysis} (\code{method = 'loclda'})
For classification using package \pkg{klaR} with tuning parameters:
\itemize{
\item Number of Nearest Neighbors (\code{k}, numeric)
}
\strong{Logic Regression} (\code{method = 'logreg'})
For classification and regression using package \pkg{LogicReg} with tuning parameters:
\itemize{
\item Maximum Number of Leaves (\code{treesize}, numeric)
\item Number of Trees (\code{ntrees}, numeric)
}
\strong{Logistic Model Trees} (\code{method = 'LMT'})
For classification using package \pkg{RWeka} with tuning parameters:
\itemize{
\item Number of Iteratons (\code{iter}, numeric)
}
\strong{Maximum Uncertainty Linear Discriminant Analysis} (\code{method = 'Mlda'})
For classification using package \pkg{HiDimDA} with no tuning parameters.
\strong{Mixture Discriminant Analysis} (\code{method = 'mda'})
For classification using package \pkg{mda} with tuning parameters:
\itemize{
\item Number of Subclasses Per Class (\code{subclasses}, numeric)
}
\strong{Model Averaged Naive Bayes Classifier} (\code{method = 'manb'})
For classification using package \pkg{bnclassify} with tuning parameters:
\itemize{
\item Smoothing Parameter (\code{smooth}, numeric)
\item Prior Probability (\code{prior}, numeric)
}
\strong{Model Averaged Neural Network} (\code{method = 'avNNet'})
For classification and regression using package \pkg{nnet} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item Weight Decay (\code{decay}, numeric)
\item Bagging (\code{bag}, logical)
}
\strong{Model Rules} (\code{method = 'M5Rules'})
For regression using package \pkg{RWeka} with tuning parameters:
\itemize{
\item Pruned (\code{pruned}, character)
\item Smoothed (\code{smoothed}, character)
}
\strong{Model Tree} (\code{method = 'M5'})
For regression using package \pkg{RWeka} with tuning parameters:
\itemize{
\item Pruned (\code{pruned}, character)
\item Smoothed (\code{smoothed}, character)
\item Rules (\code{rules}, character)
}
\strong{Monotone Multi-Layer Perceptron Neural Network} (\code{method = 'monmlp'})
For classification and regression using package \pkg{monmlp} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{hidden1}, numeric)
\item Number of Models (\code{n.ensemble}, numeric)
}
\strong{Multi-Layer Perceptron} (\code{method = 'mlp'})
For classification and regression using package \pkg{RSNNS} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
}
\strong{Multi-Layer Perceptron} (\code{method = 'mlpWeightDecay'})
For classification and regression using package \pkg{RSNNS} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item Weight Decay (\code{decay}, numeric)
}
\strong{Multi-Layer Perceptron, multiple layers} (\code{method = 'mlpWeightDecayML'})
For classification and regression using package \pkg{RSNNS} with tuning parameters:
\itemize{
\item Number of Hidden Units layer1 (\code{layer1}, numeric)
\item Number of Hidden Units layer2 (\code{layer2}, numeric)
\item Number of Hidden Units layer3 (\code{layer3}, numeric)
\item Weight Decay (\code{decay}, numeric)
}
\strong{Multi-Layer Perceptron, with multiple layers} (\code{method = 'mlpML'})
For classification and regression using package \pkg{RSNNS} with tuning parameters:
\itemize{
\item Number of Hidden Units layer1 (\code{layer1}, numeric)
\item Number of Hidden Units layer2 (\code{layer2}, numeric)
\item Number of Hidden Units layer3 (\code{layer3}, numeric)
}
\strong{Multi-Step Adaptive MCP-Net} (\code{method = 'msaenet'})
For classification and regression using package \pkg{msaenet} with tuning parameters:
\itemize{
\item Alpha (\code{alphas}, numeric)
\item Number of Adaptive Estimation Steps (\code{nsteps}, numeric)
\item Adaptive Weight Scaling Factor (\code{scale}, numeric)
}
\strong{Multilayer Perceptron Network by Stochastic Gradient Descent} (\code{method = 'mlpSGD'})
For classification and regression using packages \pkg{FCNN4R} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item L2 Regularization (\code{l2reg}, numeric)
\item RMSE Gradient Scaling (\code{lambda}, numeric)
\item Learning Rate (\code{learn_rate}, numeric)
\item Momentum (\code{momentum}, numeric)
\item Learning Rate Decay (\code{gamma}, numeric)
\item Batch Size (\code{minibatchsz}, numeric)
\item Number of Models (\code{repeats}, numeric)
}
\strong{Multilayer Perceptron Network with Dropout} (\code{method = 'mlpKerasDropout'})
For classification and regression using package \pkg{keras} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item Dropout Rate (\code{dropout}, numeric)
\item Batch Size (\code{batch_size}, numeric)
\item Learning Rate (\code{lr}, numeric)
\item Rho (\code{rho}, numeric)
\item Learning Rate Decay (\code{decay}, numeric)
\item Activation Function (\code{activation}, character)
}
Note: After \code{train} completes, the keras model object is serialized so that it can be used between R session. When predicting, the code will temporarily unsearalize the object. To make the predictions more efficient, the user might want to use \code{keras::unsearlize_model(object$finalModel$object)} in the current R session so that that operation is only done once. Also, this model cannot be run in parallel due to the nature of how tensorflow does the computations. Unlike other packages used by \code{train}, the \code{dplyr} package is fully loaded when this model is used.
\strong{Multilayer Perceptron Network with Dropout} (\code{method = 'mlpKerasDropoutCost'})
For classification using package \pkg{keras} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item Dropout Rate (\code{dropout}, numeric)
\item Batch Size (\code{batch_size}, numeric)
\item Learning Rate (\code{lr}, numeric)
\item Rho (\code{rho}, numeric)
\item Learning Rate Decay (\code{decay}, numeric)
\item Cost (\code{cost}, numeric)
\item Activation Function (\code{activation}, character)
}
Note: After \code{train} completes, the keras model object is serialized so that it can be used between R session. When predicting, the code will temporarily unsearalize the object. To make the predictions more efficient, the user might want to use \code{keras::unsearlize_model(object$finalModel$object)} in the current R session so that that operation is only done once. Also, this model cannot be run in parallel due to the nature of how tensorflow does the computations. Finally, the cost parameter weights the first class in the outcome vector. Unlike other packages used by \code{train}, the \code{dplyr} package is fully loaded when this model is used.
\strong{Multilayer Perceptron Network with Weight Decay} (\code{method = 'mlpKerasDecay'})
For classification and regression using package \pkg{keras} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item L2 Regularization (\code{lambda}, numeric)
\item Batch Size (\code{batch_size}, numeric)
\item Learning Rate (\code{lr}, numeric)
\item Rho (\code{rho}, numeric)
\item Learning Rate Decay (\code{decay}, numeric)
\item Activation Function (\code{activation}, character)
}
Note: After \code{train} completes, the keras model object is serialized so that it can be used between R session. When predicting, the code will temporarily unsearalize the object. To make the predictions more efficient, the user might want to use \code{keras::unsearlize_model(object$finalModel$object)} in the current R session so that that operation is only done once. Also, this model cannot be run in parallel due to the nature of how tensorflow does the computations. Unlike other packages used by \code{train}, the \code{dplyr} package is fully loaded when this model is used.
\strong{Multilayer Perceptron Network with Weight Decay} (\code{method = 'mlpKerasDecayCost'})
For classification using package \pkg{keras} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item L2 Regularization (\code{lambda}, numeric)
\item Batch Size (\code{batch_size}, numeric)
\item Learning Rate (\code{lr}, numeric)
\item Rho (\code{rho}, numeric)
\item Learning Rate Decay (\code{decay}, numeric)
\item Cost (\code{cost}, numeric)
\item Activation Function (\code{activation}, character)
}
Note: After \code{train} completes, the keras model object is serialized so that it can be used between R session. When predicting, the code will temporarily unsearalize the object. To make the predictions more efficient, the user might want to use \code{keras::unsearlize_model(object$finalModel$object)} in the current R session so that that operation is only done once. Also, this model cannot be run in parallel due to the nature of how tensorflow does the computations. Finally, the cost parameter weights the first class in the outcome vector. Unlike other packages used by \code{train}, the \code{dplyr} package is fully loaded when this model is used.
\strong{Multivariate Adaptive Regression Spline} (\code{method = 'earth'})
For classification and regression using package \pkg{earth} with tuning parameters:
\itemize{
\item Number of Terms (\code{nprune}, numeric)
\item Product Degree (\code{degree}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{earth} package is fully loaded when this model is used.
\strong{Multivariate Adaptive Regression Splines} (\code{method = 'gcvEarth'})
For classification and regression using package \pkg{earth} with tuning parameters:
\itemize{
\item Product Degree (\code{degree}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{earth} package is fully loaded when this model is used.
\strong{Naive Bayes} (\code{method = 'naive_bayes'})
For classification using package \pkg{naivebayes} with tuning parameters:
\itemize{
\item Laplace Correction (\code{laplace}, numeric)
\item Distribution Type (\code{usekernel}, logical)
\item Bandwidth Adjustment (\code{adjust}, numeric)
}
\strong{Naive Bayes} (\code{method = 'nb'})
For classification using package \pkg{klaR} with tuning parameters:
\itemize{
\item Laplace Correction (\code{fL}, numeric)
\item Distribution Type (\code{usekernel}, logical)
\item Bandwidth Adjustment (\code{adjust}, numeric)
}
\strong{Naive Bayes Classifier} (\code{method = 'nbDiscrete'})
For classification using package \pkg{bnclassify} with tuning parameters:
\itemize{
\item Smoothing Parameter (\code{smooth}, numeric)
}
\strong{Naive Bayes Classifier with Attribute Weighting} (\code{method = 'awnb'})
For classification using package \pkg{bnclassify} with tuning parameters:
\itemize{
\item Smoothing Parameter (\code{smooth}, numeric)
}
\strong{Nearest Shrunken Centroids} (\code{method = 'pam'})
For classification using package \pkg{pamr} with tuning parameters:
\itemize{
\item Shrinkage Threshold (\code{threshold}, numeric)
}
\strong{Negative Binomial Generalized Linear Model} (\code{method = 'glm.nb'})
For regression using package \pkg{MASS} with tuning parameters:
\itemize{
\item Link Function (\code{link}, character)
}
\strong{Neural Network} (\code{method = 'mxnet'})
For classification and regression using package \pkg{mxnet} with tuning parameters:
\itemize{
\item Number of Hidden Units in Layer 1 (\code{layer1}, numeric)
\item Number of Hidden Units in Layer 2 (\code{layer2}, numeric)
\item Number of Hidden Units in Layer 3 (\code{layer3}, numeric)
\item Learning Rate (\code{learning.rate}, numeric)
\item Momentum (\code{momentum}, numeric)
\item Dropout Rate (\code{dropout}, numeric)
\item Activation Function (\code{activation}, character)
}
Note: The \code{mxnet} package is not yet on CRAN. See \url{https://mxnet.apache.org/} for installation instructions.
\strong{Neural Network} (\code{method = 'mxnetAdam'})
For classification and regression using package \pkg{mxnet} with tuning parameters:
\itemize{
\item Number of Hidden Units in Layer 1 (\code{layer1}, numeric)
\item Number of Hidden Units in Layer 2 (\code{layer2}, numeric)
\item Number of Hidden Units in Layer 3 (\code{layer3}, numeric)
\item Dropout Rate (\code{dropout}, numeric)
\item beta1 (\code{beta1}, numeric)
\item beta2 (\code{beta2}, numeric)
\item Learning Rate (\code{learningrate}, numeric)
\item Activation Function (\code{activation}, character)
}
Note: The \code{mxnet} package is not yet on CRAN. See \url{https://mxnet.apache.org/} for installation instructions. Users are strongly advised to define \code{num.round} themselves.
\strong{Neural Network} (\code{method = 'neuralnet'})
For regression using package \pkg{neuralnet} with tuning parameters:
\itemize{
\item Number of Hidden Units in Layer 1 (\code{layer1}, numeric)
\item Number of Hidden Units in Layer 2 (\code{layer2}, numeric)
\item Number of Hidden Units in Layer 3 (\code{layer3}, numeric)
}
\strong{Neural Network} (\code{method = 'nnet'})
For classification and regression using package \pkg{nnet} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item Weight Decay (\code{decay}, numeric)
}
\strong{Neural Networks with Feature Extraction} (\code{method = 'pcaNNet'})
For classification and regression using package \pkg{nnet} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
\item Weight Decay (\code{decay}, numeric)
}
\strong{Non-Convex Penalized Quantile Regression} (\code{method = 'rqnc'})
For regression using package \pkg{rqPen} with tuning parameters:
\itemize{
\item L1 Penalty (\code{lambda}, numeric)
\item Penalty Type (\code{penalty}, character)
}
\strong{Non-Informative Model} (\code{method = 'null'})
For classification and regression with no tuning parameters.
Note: Since this model always predicts the same value, R-squared values will always be estimated to be NA.
\strong{Non-Negative Least Squares} (\code{method = 'nnls'})
For regression using package \pkg{nnls} with no tuning parameters.
\strong{Oblique Random Forest} (\code{method = 'ORFlog'})
For classification using package \pkg{obliqueRF} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{obliqueRF} package is fully loaded when this model is used.
\strong{Oblique Random Forest} (\code{method = 'ORFpls'})
For classification using package \pkg{obliqueRF} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{obliqueRF} package is fully loaded when this model is used.
\strong{Oblique Random Forest} (\code{method = 'ORFridge'})
For classification using package \pkg{obliqueRF} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{obliqueRF} package is fully loaded when this model is used.
\strong{Oblique Random Forest} (\code{method = 'ORFsvm'})
For classification using package \pkg{obliqueRF} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{obliqueRF} package is fully loaded when this model is used.
\strong{Optimal Weighted Nearest Neighbor Classifier} (\code{method = 'ownn'})
For classification using package \pkg{snn} with tuning parameters:
\itemize{
\item Number of Neighbors (\code{K}, numeric)
}
\strong{Ordered Logistic or Probit Regression} (\code{method = 'polr'})
For classification using package \pkg{MASS} with tuning parameters:
\itemize{
\item parameter (\code{method}, character)
}
\strong{Parallel Random Forest} (\code{method = 'parRF'})
For classification and regression using packages \pkg{e1071}, \pkg{randomForest}, \pkg{foreach} and \pkg{import} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
\strong{partDSA} (\code{method = 'partDSA'})
For classification and regression using package \pkg{partDSA} with tuning parameters:
\itemize{
\item Number of Terminal Partitions (\code{cut.off.growth}, numeric)
\item Minimum Percent Difference (\code{MPD}, numeric)
}
\strong{Partial Least Squares} (\code{method = 'kernelpls'})
For classification and regression using package \pkg{pls} with tuning parameters:
\itemize{
\item Number of Components (\code{ncomp}, numeric)
}
\strong{Partial Least Squares} (\code{method = 'pls'})
For classification and regression using package \pkg{pls} with tuning parameters:
\itemize{
\item Number of Components (\code{ncomp}, numeric)
}
\strong{Partial Least Squares} (\code{method = 'simpls'})
For classification and regression using package \pkg{pls} with tuning parameters:
\itemize{
\item Number of Components (\code{ncomp}, numeric)
}
\strong{Partial Least Squares} (\code{method = 'widekernelpls'})
For classification and regression using package \pkg{pls} with tuning parameters:
\itemize{
\item Number of Components (\code{ncomp}, numeric)
}
\strong{Partial Least Squares Generalized Linear Models } (\code{method = 'plsRglm'})
For classification and regression using package \pkg{plsRglm} with tuning parameters:
\itemize{
\item Number of PLS Components (\code{nt}, numeric)
\item p-Value threshold (\code{alpha.pvals.expli}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{plsRglm} package is fully loaded when this model is used.
\strong{Patient Rule Induction Method} (\code{method = 'PRIM'})
For classification using package \pkg{supervisedPRIM} with tuning parameters:
\itemize{
\item peeling quantile (\code{peel.alpha}, numeric)
\item pasting quantile (\code{paste.alpha}, numeric)
\item minimum mass (\code{mass.min}, numeric)
}
\strong{Penalized Discriminant Analysis} (\code{method = 'pda'})
For classification using package \pkg{mda} with tuning parameters:
\itemize{
\item Shrinkage Penalty Coefficient (\code{lambda}, numeric)
}
\strong{Penalized Discriminant Analysis} (\code{method = 'pda2'})
For classification using package \pkg{mda} with tuning parameters:
\itemize{
\item Degrees of Freedom (\code{df}, numeric)
}
\strong{Penalized Linear Discriminant Analysis} (\code{method = 'PenalizedLDA'})
For classification using packages \pkg{penalizedLDA} and \pkg{plyr} with tuning parameters:
\itemize{
\item L1 Penalty (\code{lambda}, numeric)
\item Number of Discriminant Functions (\code{K}, numeric)
}
\strong{Penalized Linear Regression} (\code{method = 'penalized'})
For regression using package \pkg{penalized} with tuning parameters:
\itemize{
\item L1 Penalty (\code{lambda1}, numeric)
\item L2 Penalty (\code{lambda2}, numeric)
}
\strong{Penalized Logistic Regression} (\code{method = 'plr'})
For classification using package \pkg{stepPlr} with tuning parameters:
\itemize{
\item L2 Penalty (\code{lambda}, numeric)
\item Complexity Parameter (\code{cp}, character)
}
\strong{Penalized Multinomial Regression} (\code{method = 'multinom'})
For classification using package \pkg{nnet} with tuning parameters:
\itemize{
\item Weight Decay (\code{decay}, numeric)
}
\strong{Penalized Ordinal Regression} (\code{method = 'ordinalNet'})
For classification using packages \pkg{ordinalNet} and \pkg{plyr} with tuning parameters:
\itemize{
\item Mixing Percentage (\code{alpha}, numeric)
\item Selection Criterion (\code{criteria}, character)
\item Link Function (\code{link}, character)
}
Note: Requires ordinalNet package version >= 2.0
\strong{Polynomial Kernel Regularized Least Squares} (\code{method = 'krlsPoly'})
For regression using package \pkg{KRLS} with tuning parameters:
\itemize{
\item Regularization Parameter (\code{lambda}, numeric)
\item Polynomial Degree (\code{degree}, numeric)
}
\strong{Principal Component Analysis} (\code{method = 'pcr'})
For regression using package \pkg{pls} with tuning parameters:
\itemize{
\item Number of Components (\code{ncomp}, numeric)
}
\strong{Projection Pursuit Regression} (\code{method = 'ppr'})
For regression with tuning parameters:
\itemize{
\item Number of Terms (\code{nterms}, numeric)
}
\strong{Quadratic Discriminant Analysis} (\code{method = 'qda'})
For classification using package \pkg{MASS} with no tuning parameters.
\strong{Quadratic Discriminant Analysis with Stepwise Feature Selection} (\code{method = 'stepQDA'})
For classification using packages \pkg{klaR} and \pkg{MASS} with tuning parameters:
\itemize{
\item Maximum Number of Variables (\code{maxvar}, numeric)
\item Search Direction (\code{direction}, character)
}
\strong{Quantile Random Forest} (\code{method = 'qrf'})
For regression using package \pkg{quantregForest} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
\strong{Quantile Regression Neural Network} (\code{method = 'qrnn'})
For regression using package \pkg{qrnn} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{n.hidden}, numeric)
\item Weight Decay (\code{penalty}, numeric)
\item Bagged Models? (\code{bag}, logical)
}
\strong{Quantile Regression with LASSO penalty} (\code{method = 'rqlasso'})
For regression using package \pkg{rqPen} with tuning parameters:
\itemize{
\item L1 Penalty (\code{lambda}, numeric)
}
\strong{Radial Basis Function Kernel Regularized Least Squares} (\code{method = 'krlsRadial'})
For regression using packages \pkg{KRLS} and \pkg{kernlab} with tuning parameters:
\itemize{
\item Regularization Parameter (\code{lambda}, numeric)
\item Sigma (\code{sigma}, numeric)
}
\strong{Radial Basis Function Network} (\code{method = 'rbf'})
For classification and regression using package \pkg{RSNNS} with tuning parameters:
\itemize{
\item Number of Hidden Units (\code{size}, numeric)
}
\strong{Radial Basis Function Network} (\code{method = 'rbfDDA'})
For classification and regression using package \pkg{RSNNS} with tuning parameters:
\itemize{
\item Activation Limit for Conflicting Classes (\code{negativeThreshold}, numeric)
}
\strong{Random Ferns} (\code{method = 'rFerns'})
For classification using package \pkg{rFerns} with tuning parameters:
\itemize{
\item Fern Depth (\code{depth}, numeric)
}
\strong{Random Forest} (\code{method = 'ranger'})
For classification and regression using packages \pkg{e1071}, \pkg{ranger} and \pkg{dplyr} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
\item Splitting Rule (\code{splitrule}, character)
\item Minimal Node Size (\code{min.node.size}, numeric)
}
\strong{Random Forest} (\code{method = 'Rborist'})
For classification and regression using package \pkg{Rborist} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{predFixed}, numeric)
\item Minimal Node Size (\code{minNode}, numeric)
}
\strong{Random Forest} (\code{method = 'rf'})
For classification and regression using package \pkg{randomForest} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
\strong{Random Forest by Randomization} (\code{method = 'extraTrees'})
For classification and regression using package \pkg{extraTrees} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
\item Number of Random Cuts (\code{numRandomCuts}, numeric)
}
\strong{Random Forest Rule-Based Model} (\code{method = 'rfRules'})
For classification and regression using packages \pkg{randomForest}, \pkg{inTrees} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
\item Maximum Rule Depth (\code{maxdepth}, numeric)
}
\strong{Regularized Discriminant Analysis} (\code{method = 'rda'})
For classification using package \pkg{klaR} with tuning parameters:
\itemize{
\item Gamma (\code{gamma}, numeric)
\item Lambda (\code{lambda}, numeric)
}
\strong{Regularized Linear Discriminant Analysis} (\code{method = 'rlda'})
For classification using package \pkg{sparsediscrim} with tuning parameters:
\itemize{
\item Regularization Method (\code{estimator}, character)
}
\strong{Regularized Logistic Regression} (\code{method = 'regLogistic'})
For classification using package \pkg{LiblineaR} with tuning parameters:
\itemize{
\item Cost (\code{cost}, numeric)
\item Loss Function (\code{loss}, character)
\item Tolerance (\code{epsilon}, numeric)
}
\strong{Regularized Random Forest} (\code{method = 'RRF'})
For classification and regression using packages \pkg{randomForest} and \pkg{RRF} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
\item Regularization Value (\code{coefReg}, numeric)
\item Importance Coefficient (\code{coefImp}, numeric)
}
\strong{Regularized Random Forest} (\code{method = 'RRFglobal'})
For classification and regression using package \pkg{RRF} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
\item Regularization Value (\code{coefReg}, numeric)
}
\strong{Relaxed Lasso} (\code{method = 'relaxo'})
For regression using packages \pkg{relaxo} and \pkg{plyr} with tuning parameters:
\itemize{
\item Penalty Parameter (\code{lambda}, numeric)
\item Relaxation Parameter (\code{phi}, numeric)
}
\strong{Relevance Vector Machines with Linear Kernel} (\code{method = 'rvmLinear'})
For regression using package \pkg{kernlab} with no tuning parameters.
\strong{Relevance Vector Machines with Polynomial Kernel} (\code{method = 'rvmPoly'})
For regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Scale (\code{scale}, numeric)
\item Polynomial Degree (\code{degree}, numeric)
}
\strong{Relevance Vector Machines with Radial Basis Function Kernel} (\code{method = 'rvmRadial'})
For regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Sigma (\code{sigma}, numeric)
}
\strong{Ridge Regression} (\code{method = 'ridge'})
For regression using package \pkg{elasticnet} with tuning parameters:
\itemize{
\item Weight Decay (\code{lambda}, numeric)
}
\strong{Ridge Regression with Variable Selection} (\code{method = 'foba'})
For regression using package \pkg{foba} with tuning parameters:
\itemize{
\item Number of Variables Retained (\code{k}, numeric)
\item L2 Penalty (\code{lambda}, numeric)
}
\strong{Robust Linear Discriminant Analysis} (\code{method = 'Linda'})
For classification using package \pkg{rrcov} with no tuning parameters.
\strong{Robust Linear Model} (\code{method = 'rlm'})
For regression using package \pkg{MASS} with tuning parameters:
\itemize{
\item intercept (\code{intercept}, logical)
\item psi (\code{psi}, character)
}
\strong{Robust Mixture Discriminant Analysis} (\code{method = 'rmda'})
For classification using package \pkg{robustDA} with tuning parameters:
\itemize{
\item Number of Subclasses Per Class (\code{K}, numeric)
\item Model (\code{model}, character)
}
\strong{Robust Quadratic Discriminant Analysis} (\code{method = 'QdaCov'})
For classification using package \pkg{rrcov} with no tuning parameters.
\strong{Robust Regularized Linear Discriminant Analysis} (\code{method = 'rrlda'})
For classification using package \pkg{rrlda} with tuning parameters:
\itemize{
\item Penalty Parameter (\code{lambda}, numeric)
\item Robustness Parameter (\code{hp}, numeric)
\item Penalty Type (\code{penalty}, character)
}
Note: Unlike other packages used by \code{train}, the \code{rrlda} package is fully loaded when this model is used.
\strong{Robust SIMCA} (\code{method = 'RSimca'})
For classification using package \pkg{rrcovHD} with no tuning parameters.
Note: Unlike other packages used by \code{train}, the \code{rrcovHD} package is fully loaded when this model is used.
\strong{ROC-Based Classifier} (\code{method = 'rocc'})
For classification using package \pkg{rocc} with tuning parameters:
\itemize{
\item Number of Variables Retained (\code{xgenes}, numeric)
}
\strong{Rotation Forest} (\code{method = 'rotationForest'})
For classification using package \pkg{rotationForest} with tuning parameters:
\itemize{
\item Number of Variable Subsets (\code{K}, numeric)
\item Ensemble Size (\code{L}, numeric)
}
\strong{Rotation Forest} (\code{method = 'rotationForestCp'})
For classification using packages \pkg{rpart}, \pkg{plyr} and \pkg{rotationForest} with tuning parameters:
\itemize{
\item Number of Variable Subsets (\code{K}, numeric)
\item Ensemble Size (\code{L}, numeric)
\item Complexity Parameter (\code{cp}, numeric)
}
\strong{Rule-Based Classifier} (\code{method = 'JRip'})
For classification using package \pkg{RWeka} with tuning parameters:
\itemize{
\item Number of Optimizations (\code{NumOpt}, numeric)
\item Number of Folds (\code{NumFolds}, numeric)
\item Min Weights (\code{MinWeights}, numeric)
}
\strong{Rule-Based Classifier} (\code{method = 'PART'})
For classification using package \pkg{RWeka} with tuning parameters:
\itemize{
\item Confidence Threshold (\code{threshold}, numeric)
\item Pruning (\code{pruned}, character)
}
\strong{Self-Organizing Maps} (\code{method = 'xyf'})
For classification and regression using package \pkg{kohonen} with tuning parameters:
\itemize{
\item Rows (\code{xdim}, numeric)
\item Columns (\code{ydim}, numeric)
\item Layer Weight (\code{user.weights}, numeric)
\item Topology (\code{topo}, character)
}
Note: As of version 3.0.0 of the kohonen package, the argument \code{user.weights} replaces the old \code{alpha} parameter. \code{user.weights} is usually a vector of relative weights such as \code{c(1, 3)} but is parameterized here as a proportion such as \code{c(1-.75, .75)} where the .75 is the value of the tuning parameter passed to \code{train} and indicates that the outcome layer has 3 times the weight as the predictor layer.
\strong{Semi-Naive Structure Learner Wrapper} (\code{method = 'nbSearch'})
For classification using package \pkg{bnclassify} with tuning parameters:
\itemize{
\item Number of Folds (\code{k}, numeric)
\item Minimum Absolute Improvement (\code{epsilon}, numeric)
\item Smoothing Parameter (\code{smooth}, numeric)
\item Final Smoothing Parameter (\code{final_smooth}, numeric)
\item Search Direction (\code{direction}, character)
}
\strong{Shrinkage Discriminant Analysis} (\code{method = 'sda'})
For classification using package \pkg{sda} with tuning parameters:
\itemize{
\item Diagonalize (\code{diagonal}, logical)
\item shrinkage (\code{lambda}, numeric)
}
\strong{SIMCA} (\code{method = 'CSimca'})
For classification using packages \pkg{rrcov} and \pkg{rrcovHD} with no tuning parameters.
\strong{Simplified TSK Fuzzy Rules} (\code{method = 'FS.HGD'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Number of Fuzzy Terms (\code{num.labels}, numeric)
\item Max. Iterations (\code{max.iter}, numeric)
}
\strong{Single C5.0 Ruleset} (\code{method = 'C5.0Rules'})
For classification using package \pkg{C50} with no tuning parameters.
\strong{Single C5.0 Tree} (\code{method = 'C5.0Tree'})
For classification using package \pkg{C50} with no tuning parameters.
\strong{Single Rule Classification} (\code{method = 'OneR'})
For classification using package \pkg{RWeka} with no tuning parameters.
\strong{Sparse Distance Weighted Discrimination} (\code{method = 'sdwd'})
For classification using package \pkg{sdwd} with tuning parameters:
\itemize{
\item L1 Penalty (\code{lambda}, numeric)
\item L2 Penalty (\code{lambda2}, numeric)
}
\strong{Sparse Linear Discriminant Analysis} (\code{method = 'sparseLDA'})
For classification using package \pkg{sparseLDA} with tuning parameters:
\itemize{
\item Number of Predictors (\code{NumVars}, numeric)
\item Lambda (\code{lambda}, numeric)
}
\strong{Sparse Mixture Discriminant Analysis} (\code{method = 'smda'})
For classification using package \pkg{sparseLDA} with tuning parameters:
\itemize{
\item Number of Predictors (\code{NumVars}, numeric)
\item Lambda (\code{lambda}, numeric)
\item Number of Subclasses (\code{R}, numeric)
}
\strong{Sparse Partial Least Squares} (\code{method = 'spls'})
For classification and regression using package \pkg{spls} with tuning parameters:
\itemize{
\item Number of Components (\code{K}, numeric)
\item Threshold (\code{eta}, numeric)
\item Kappa (\code{kappa}, numeric)
}
\strong{Spike and Slab Regression} (\code{method = 'spikeslab'})
For regression using packages \pkg{spikeslab} and \pkg{plyr} with tuning parameters:
\itemize{
\item Variables Retained (\code{vars}, numeric)
}
Note: Unlike other packages used by \code{train}, the \code{spikeslab} package is fully loaded when this model is used.
\strong{Stabilized Linear Discriminant Analysis} (\code{method = 'slda'})
For classification using package \pkg{ipred} with no tuning parameters.
\strong{Stabilized Nearest Neighbor Classifier} (\code{method = 'snn'})
For classification using package \pkg{snn} with tuning parameters:
\itemize{
\item Stabilization Parameter (\code{lambda}, numeric)
}
\strong{Stacked AutoEncoder Deep Neural Network} (\code{method = 'dnn'})
For classification and regression using package \pkg{deepnet} with tuning parameters:
\itemize{
\item Hidden Layer 1 (\code{layer1}, numeric)
\item Hidden Layer 2 (\code{layer2}, numeric)
\item Hidden Layer 3 (\code{layer3}, numeric)
\item Hidden Dropouts (\code{hidden_dropout}, numeric)
\item Visible Dropout (\code{visible_dropout}, numeric)
}
\strong{Stochastic Gradient Boosting} (\code{method = 'gbm'})
For classification and regression using packages \pkg{gbm} and \pkg{plyr} with tuning parameters:
\itemize{
\item Number of Boosting Iterations (\code{n.trees}, numeric)
\item Max Tree Depth (\code{interaction.depth}, numeric)
\item Shrinkage (\code{shrinkage}, numeric)
\item Min. Terminal Node Size (\code{n.minobsinnode}, numeric)
}
\strong{Subtractive Clustering and Fuzzy c-Means Rules} (\code{method = 'SBC'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Radius (\code{r.a}, numeric)
\item Upper Threshold (\code{eps.high}, numeric)
\item Lower Threshold (\code{eps.low}, numeric)
}
\strong{Supervised Principal Component Analysis} (\code{method = 'superpc'})
For regression using package \pkg{superpc} with tuning parameters:
\itemize{
\item Threshold (\code{threshold}, numeric)
\item Number of Components (\code{n.components}, numeric)
}
\strong{Support Vector Machines with Boundrange String Kernel} (\code{method = 'svmBoundrangeString'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item length (\code{length}, numeric)
\item Cost (\code{C}, numeric)
}
\strong{Support Vector Machines with Class Weights} (\code{method = 'svmRadialWeights'})
For classification using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Sigma (\code{sigma}, numeric)
\item Cost (\code{C}, numeric)
\item Weight (\code{Weight}, numeric)
}
\strong{Support Vector Machines with Exponential String Kernel} (\code{method = 'svmExpoString'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item lambda (\code{lambda}, numeric)
\item Cost (\code{C}, numeric)
}
\strong{Support Vector Machines with Linear Kernel} (\code{method = 'svmLinear'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Cost (\code{C}, numeric)
}
\strong{Support Vector Machines with Linear Kernel} (\code{method = 'svmLinear2'})
For classification and regression using package \pkg{e1071} with tuning parameters:
\itemize{
\item Cost (\code{cost}, numeric)
}
\strong{Support Vector Machines with Polynomial Kernel} (\code{method = 'svmPoly'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Polynomial Degree (\code{degree}, numeric)
\item Scale (\code{scale}, numeric)
\item Cost (\code{C}, numeric)
}
\strong{Support Vector Machines with Radial Basis Function Kernel} (\code{method = 'svmRadial'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Sigma (\code{sigma}, numeric)
\item Cost (\code{C}, numeric)
}
\strong{Support Vector Machines with Radial Basis Function Kernel} (\code{method = 'svmRadialCost'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Cost (\code{C}, numeric)
}
\strong{Support Vector Machines with Radial Basis Function Kernel} (\code{method = 'svmRadialSigma'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item Sigma (\code{sigma}, numeric)
\item Cost (\code{C}, numeric)
}
Note: This SVM model tunes over the cost parameter and the RBF kernel parameter sigma. In the latter case, using \code{tuneLength} will, at most, evaluate six values of the kernel parameter. This enables a broad search over the cost parameter and a relatively narrow search over \code{sigma}
\strong{Support Vector Machines with Spectrum String Kernel} (\code{method = 'svmSpectrumString'})
For classification and regression using package \pkg{kernlab} with tuning parameters:
\itemize{
\item length (\code{length}, numeric)
\item Cost (\code{C}, numeric)
}
\strong{The Bayesian lasso} (\code{method = 'blasso'})
For regression using package \pkg{monomvn} with tuning parameters:
\itemize{
\item Sparsity Threshold (\code{sparsity}, numeric)
}
Note: This model creates predictions using the mean of the posterior distributions but sets some parameters specifically to zero based on the tuning parameter \code{sparsity}. For example, when \code{sparsity = .5}, only coefficients where at least half the posterior estimates are nonzero are used.
\strong{The lasso} (\code{method = 'lasso'})
For regression using package \pkg{elasticnet} with tuning parameters:
\itemize{
\item Fraction of Full Solution (\code{fraction}, numeric)
}
\strong{Tree Augmented Naive Bayes Classifier} (\code{method = 'tan'})
For classification using package \pkg{bnclassify} with tuning parameters:
\itemize{
\item Score Function (\code{score}, character)
\item Smoothing Parameter (\code{smooth}, numeric)
}
\strong{Tree Augmented Naive Bayes Classifier Structure Learner Wrapper} (\code{method = 'tanSearch'})
For classification using package \pkg{bnclassify} with tuning parameters:
\itemize{
\item Number of Folds (\code{k}, numeric)
\item Minimum Absolute Improvement (\code{epsilon}, numeric)
\item Smoothing Parameter (\code{smooth}, numeric)
\item Final Smoothing Parameter (\code{final_smooth}, numeric)
\item Super-Parent (\code{sp}, logical)
}
\strong{Tree Augmented Naive Bayes Classifier with Attribute Weighting} (\code{method = 'awtan'})
For classification using package \pkg{bnclassify} with tuning parameters:
\itemize{
\item Score Function (\code{score}, character)
\item Smoothing Parameter (\code{smooth}, numeric)
}
\strong{Tree Models from Genetic Algorithms} (\code{method = 'evtree'})
For classification and regression using package \pkg{evtree} with tuning parameters:
\itemize{
\item Complexity Parameter (\code{alpha}, numeric)
}
\strong{Tree-Based Ensembles} (\code{method = 'nodeHarvest'})
For classification and regression using package \pkg{nodeHarvest} with tuning parameters:
\itemize{
\item Maximum Interaction Depth (\code{maxinter}, numeric)
\item Prediction Mode (\code{mode}, character)
}
\strong{Variational Bayesian Multinomial Probit Regression} (\code{method = 'vbmpRadial'})
For classification using package \pkg{vbmp} with tuning parameters:
\itemize{
\item Theta Estimated (\code{estimateTheta}, character)
}
\strong{Wang and Mendel Fuzzy Rules} (\code{method = 'WM'})
For regression using package \pkg{frbs} with tuning parameters:
\itemize{
\item Number of Fuzzy Terms (\code{num.labels}, numeric)
\item Membership Function (\code{type.mf}, character)
}
\strong{Weighted Subspace Random Forest} (\code{method = 'wsrf'})
For classification using package \pkg{wsrf} with tuning parameters:
\itemize{
\item Number of Randomly Selected Predictors (\code{mtry}, numeric)
}
}
\references{``Using your own model in \code{\link{train}}'' (\url{https://topepo.github.io/caret/using-your-own-model-in-train.html})}
\keyword{models}
|