File: plot.varImp.train.Rd

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (50 lines) | stat: -rw-r--r-- 1,495 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plot.varImp.train.R
\name{plot.varImp.train}
\alias{plot.varImp.train}
\alias{ggplot.varImp.train}
\title{Plotting variable importance measures}
\usage{
\method{plot}{varImp.train}(x, top = dim(x$importance)[1], ...)

\method{ggplot}{varImp.train}(
  data,
  mapping = NULL,
  top = dim(data$importance)[1],
  ...,
  environment = NULL
)
}
\arguments{
\item{x, data}{an object with class \code{varImp}.}

\item{top}{a scalar numeric that specifies the number of variables to be
displayed (in order of importance)}

\item{\dots}{arguments to pass to the lattice plot function
(\code{\link[lattice:xyplot]{dotplot}} and \code{\link{panel.needle}})}

\item{mapping, environment}{unused arguments to make consistent with
\pkg{ggplot2} generic method}
}
\value{
a lattice plot object
}
\description{
This function produces lattice and ggplot plots of objects with class
"varImp.train". More info will be forthcoming.
}
\details{
For models where there is only one importance value, such a regression
models, a "Pareto-type" plot is produced where the variables are ranked by
their importance and a needle-plot is used to show the top variables.
Horizontal bar charts are used for \code{ggplot}.

When there is more than one importance value per predictor, the same plot is
produced within conditioning panels for each class. The top predictors are
sorted by their average importance.
}
\author{
Max Kuhn
}
\keyword{hplot}