File: plotClassProbs.Rd

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (80 lines) | stat: -rw-r--r-- 2,302 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plotClassProbs.R
\name{plotClassProbs}
\alias{plotClassProbs}
\title{Plot Predicted Probabilities in Classification Models}
\usage{
plotClassProbs(object, plotType = "histogram", useObjects = FALSE, ...)
}
\arguments{
\item{object}{an object (preferably from the function
\code{\link{extractProb}}. There should be columns for each level of the
class factor and columns named \code{obs}, \code{pred}, \code{model} (e.g.
"rpart", "nnet" etc), \code{dataType} (e.g. "Training", "Test" etc) and
optionally \code{objects} (for giving names to objects with the same model
type).}

\item{plotType}{either "histogram" or "densityplot"}

\item{useObjects}{a logical; should the object name (if any) be used as a
conditioning variable?}

\item{\dots}{parameters to pass to \code{\link[lattice]{histogram}} or
\code{\link[lattice]{densityplot}}}
}
\value{
A lattice object. Note that the plot has to be printed to be
displayed (especially in a loop).
}
\description{
This function takes an object (preferably from the function
\code{\link{extractProb}}) and creates a lattice plot.
}
\details{
If the call to \code{\link{extractProb}} included test data, these data are
shown, but if unknowns were also included, these are not plotted
}
\examples{

\dontrun{
data(mdrr)
set.seed(90)
inTrain <- createDataPartition(mdrrClass, p = .5)[[1]]

trainData <- mdrrDescr[inTrain,1:20]
testData <- mdrrDescr[-inTrain,1:20]

trainY <- mdrrClass[inTrain]
testY <- mdrrClass[-inTrain]

ctrl <- trainControl(method = "cv")

nbFit1 <- train(trainData, trainY, "nb",
                trControl = ctrl,
                tuneGrid = data.frame(usekernel = TRUE, fL = 0))

nbFit2 <- train(trainData, trainY, "nb",
                trControl = ctrl,
                tuneGrid = data.frame(usekernel = FALSE, fL = 0))


models <- list(para = nbFit2, nonpara = nbFit1)

predProbs <- extractProb(models, testX = testData,  testY = testY)

plotClassProbs(predProbs, useObjects = TRUE)
plotClassProbs(predProbs,
               subset = object == "para" & dataType == "Test")
plotClassProbs(predProbs,
               useObjects = TRUE,
               plotType = "densityplot",
               auto.key = list(columns = 2))
}



}
\author{
Max Kuhn
}
\keyword{hplot}