File: plotObsVsPred.Rd

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (94 lines) | stat: -rw-r--r-- 2,839 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plotObsVsPred.R
\name{plotObsVsPred}
\alias{plotObsVsPred}
\title{Plot Observed versus Predicted Results in Regression and Classification
Models}
\usage{
plotObsVsPred(object, equalRanges = TRUE, ...)
}
\arguments{
\item{object}{an object (preferably from the function
\code{\link{extractPrediction}}. There should be columns named \code{obs},
\code{pred}, \code{model} (e.g. "rpart", "nnet" etc.)  and \code{dataType}
(e.g. "Training", "Test" etc)}

\item{equalRanges}{a logical; should the x- and y-axis ranges be the same?}

\item{\dots}{parameters to pass to \code{\link[lattice]{xyplot}} or
\code{\link[lattice:xyplot]{dotplot}}, such as \code{auto.key}}
}
\value{
A lattice object. Note that the plot has to be printed to be
displayed (especially in a loop).
}
\description{
This function takes an object (preferably from the function
\code{\link{extractPrediction}}) and creates a lattice plot. For numeric
outcomes, the observed and predicted data are plotted with a 45 degree
reference line and a smoothed fit. For factor outcomes, a dotplot plot is
produced with the accuracies for the different models.
}
\details{
If the call to \code{\link{extractPrediction}} included test data, these
data are shown, but if unknowns were also included, they are not plotted
}
\examples{

\dontrun{
# regression example
data(BostonHousing)
rpartFit <- train(BostonHousing[1:100, -c(4, 14)], 
                  BostonHousing$medv[1:100], 
                  "rpart", tuneLength = 9)
plsFit <- train(BostonHousing[1:100, -c(4, 14)], 
                BostonHousing$medv[1:100], 
                "pls")

predVals <- extractPrediction(list(rpartFit, plsFit), 
                              testX = BostonHousing[101:200, -c(4, 14)], 
                              testY = BostonHousing$medv[101:200], 
                              unkX = BostonHousing[201:300, -c(4, 14)])

plotObsVsPred(predVals)


#classification example
data(Satellite)
numSamples <- dim(Satellite)[1]
set.seed(716)

varIndex <- 1:numSamples

trainSamples <- sample(varIndex, 150)

varIndex <- (1:numSamples)[-trainSamples]
testSamples <- sample(varIndex, 100)

varIndex <- (1:numSamples)[-c(testSamples, trainSamples)]
unkSamples <- sample(varIndex, 50)

trainX <- Satellite[trainSamples, -37]
trainY <- Satellite[trainSamples, 37]

testX <- Satellite[testSamples, -37]
testY <- Satellite[testSamples, 37]

unkX <- Satellite[unkSamples, -37]

knnFit  <- train(trainX, trainY, "knn")
rpartFit <- train(trainX, trainY, "rpart")

predTargets <- extractPrediction(list(knnFit, rpartFit), 
                                 testX = testX, 
                                 testY = testY, 
                                 unkX = unkX)

plotObsVsPred(predTargets)
}

}
\author{
Max Kuhn
}
\keyword{hplot}