1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/resamples.R
\name{resamples}
\alias{resamples}
\alias{resamples.default}
\alias{summary.resamples}
\alias{sort.resamples}
\alias{as.matrix.resamples}
\alias{as.data.frame.resamples}
\alias{modelCor}
\alias{print.resamples}
\title{Collation and Visualization of Resampling Results}
\usage{
resamples(x, ...)
\method{resamples}{default}(x, modelNames = names(x), ...)
\method{sort}{resamples}(x, decreasing = FALSE, metric = x$metric[1], FUN = mean, ...)
\method{summary}{resamples}(object, metric = object$metrics, ...)
\method{as.matrix}{resamples}(x, metric = x$metric[1], ...)
\method{as.data.frame}{resamples}(x, row.names = NULL, optional = FALSE, metric = x$metric[1], ...)
modelCor(x, metric = x$metric[1], ...)
\method{print}{resamples}(x, ...)
}
\arguments{
\item{x}{a list of two or more objects of class \code{\link{train}},
\code{\link{sbf}} or \code{\link{rfe}} with a common set of resampling
indices in the \code{control} object. For \code{sort.resamples}, it is an
object generated by \code{resamples}.}
\item{\dots}{only used for \code{sort} and \code{modelCor} and captures
arguments to pass to \code{sort} or \code{FUN}.}
\item{modelNames}{an optional set of names to give to the resampling results}
\item{decreasing}{logical. Should the sort be increasing or decreasing?}
\item{metric}{a character string for the performance measure used to sort or
computing the between-model correlations}
\item{FUN}{a function whose first argument is a vector and returns a scalar,
to be applied to each model's performance measure.}
\item{object}{an object generated by \code{resamples}}
\item{row.names, optional}{not currently used but included for consistency
with \code{as.data.frame}}
}
\value{
For \code{resamples}: an object with class \code{"resamples"} with
elements \item{call }{the call} \item{values }{a data frame of results where
rows correspond to resampled data sets and columns indicate the model and
metric} \item{models }{a character string of model labels} \item{metrics }{a
character string of performance metrics} \item{methods }{a character string
of the \code{\link{train}} \code{method} argument values for each model }
For \code{sort.resamples} a character string in the sorted order is
generated. \code{modelCor} returns a correlation matrix.
}
\description{
These functions provide methods for collection, analyzing and visualizing a
set of resampling results from a common data set.
}
\details{
The ideas and methods here are based on Hothorn et al. (2005) and Eugster et
al. (2008).
The results from \code{\link{train}} can have more than one performance
metric per resample. Each metric in the input object is saved.
\code{resamples} checks that the resampling results match; that is, the
indices in the object \code{trainObject$control$index} are the same. Also,
the argument \code{\link{trainControl}} \code{returnResamp} should have a
value of \code{"final"} for each model.
The summary function computes summary statistics across each model/metric
combination.
}
\examples{
data(BloodBrain)
set.seed(1)
## tmp <- createDataPartition(logBBB,
## p = .8,
## times = 100)
## rpartFit <- train(bbbDescr, logBBB,
## "rpart",
## tuneLength = 16,
## trControl = trainControl(
## method = "LGOCV", index = tmp))
## ctreeFit <- train(bbbDescr, logBBB,
## "ctree",
## trControl = trainControl(
## method = "LGOCV", index = tmp))
## earthFit <- train(bbbDescr, logBBB,
## "earth",
## tuneLength = 20,
## trControl = trainControl(
## method = "LGOCV", index = tmp))
## or load pre-calculated results using:
## load(url("http://caret.r-forge.r-project.org/exampleModels.RData"))
## resamps <- resamples(list(CART = rpartFit,
## CondInfTree = ctreeFit,
## MARS = earthFit))
## resamps
## summary(resamps)
}
\references{
Hothorn et al. The design and analysis of benchmark experiments.
Journal of Computational and Graphical Statistics (2005) vol. 14 (3) pp.
675-699
Eugster et al. Exploratory and inferential analysis of benchmark
experiments. Ludwigs-Maximilians-Universitat Munchen, Department of
Statistics, Tech. Rep (2008) vol. 30
}
\seealso{
\code{\link{train}}, \code{\link{trainControl}},
\code{\link{diff.resamples}}, \code{\link{xyplot.resamples}},
\code{\link{densityplot.resamples}}, \code{\link{bwplot.resamples}},
\code{\link{splom.resamples}}
}
\author{
Max Kuhn
}
\keyword{models}
|