1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/rfe.R
\name{rfe}
\alias{rfe}
\alias{rfe.default}
\alias{rfeIter}
\alias{predict.rfe}
\alias{update.rfe}
\alias{rfe.formula}
\alias{rfe.recipe}
\title{Backwards Feature Selection}
\usage{
rfe(x, ...)
\method{rfe}{default}(
x,
y,
sizes = 2^(2:4),
metric = ifelse(is.factor(y), "Accuracy", "RMSE"),
maximize = ifelse(metric \%in\% c("RMSE", "MAE", "logLoss"), FALSE, TRUE),
rfeControl = rfeControl(),
...
)
\method{rfe}{formula}(form, data, ..., subset, na.action, contrasts = NULL)
rfeIter(
x,
y,
testX,
testY,
sizes,
rfeControl = rfeControl(),
label = "",
seeds = NA,
...
)
\method{update}{rfe}(object, x, y, size, ...)
\method{rfe}{recipe}(
x,
data,
sizes = 2^(2:4),
metric = NULL,
maximize = NULL,
rfeControl = rfeControl(),
...
)
}
\arguments{
\item{x}{A matrix or data frame of predictors for model training. This
object must have unique column names. For the recipes method, \code{x}
is a recipe object.}
\item{\dots}{options to pass to the model fitting function (ignored in
\code{predict.rfe})}
\item{y}{a vector of training set outcomes (either numeric or factor)}
\item{sizes}{a numeric vector of integers corresponding to the number of
features that should be retained}
\item{metric}{a string that specifies what summary metric will be used to
select the optimal model. By default, possible values are "RMSE" and
"Rsquared" for regression and "Accuracy" and "Kappa" for classification. If
custom performance metrics are used (via the \code{functions} argument in
\code{\link{rfeControl}}, the value of \code{metric} should match one of the
arguments.}
\item{maximize}{a logical: should the metric be maximized or minimized?}
\item{rfeControl}{a list of options, including functions for fitting and
prediction. The web page
\url{http://topepo.github.io/caret/recursive-feature-elimination.html#rfe} has more
details and examples related to this function.}
\item{form}{A formula of the form \code{y ~ x1 + x2 + ...}}
\item{data}{Data frame from which variables specified in
\code{formula} or \code{recipe} are preferentially to be taken.}
\item{subset}{An index vector specifying the cases to be used
in the training sample. (NOTE: If given, this argument must be
named.)}
\item{na.action}{A function to specify the action to be taken
if NAs are found. The default action is for the procedure to
fail. An alternative is \code{na.omit}, which leads to rejection
of cases with missing values on any required variable. (NOTE: If
given, this argument must be named.)}
\item{contrasts}{A list of contrasts to be used for some or all
the factors appearing as variables in the model formula.}
\item{testX}{a matrix or data frame of test set predictors. This must have
the same column names as \code{x}}
\item{testY}{a vector of test set outcomes}
\item{label}{an optional character string to be printed when in verbose
mode.}
\item{seeds}{an optional vector of integers for the size. The vector should
have length of \code{length(sizes)+1}}
\item{object}{an object of class \code{rfe}}
\item{size}{a single integers corresponding to the number of features that
should be retained in the updated model}
}
\value{
A list with elements \item{finalVariables}{a list of size
\code{length(sizes) + 1} containing the column names of the ``surviving''
predictors at each stage of selection. The first element corresponds to all
the predictors (i.e. \code{size = ncol(x)})} \item{pred }{a data frame with
columns for the test set outcome, the predicted outcome and the subset
size.}
}
\description{
A simple backwards selection, a.k.a. recursive feature elimination (RFE),
algorithm
}
\details{
More details on this function can be found at
\url{http://topepo.github.io/caret/recursive-feature-elimination.html}.
This function implements backwards selection of predictors based on
predictor importance ranking. The predictors are ranked and the less
important ones are sequentially eliminated prior to modeling. The goal is to
find a subset of predictors that can be used to produce an accurate model.
The web page \url{http://topepo.github.io/caret/recursive-feature-elimination.html#rfe}
has more details and examples related to this function.
\code{rfe} can be used with "explicit parallelism", where different
resamples (e.g. cross-validation group) can be split up and run on multiple
machines or processors. By default, \code{rfe} will use a single processor
on the host machine. As of version 4.99 of this package, the framework used
for parallel processing uses the \pkg{foreach} package. To run the resamples
in parallel, the code for \code{rfe} does not change; prior to the call to
\code{rfe}, a parallel backend is registered with \pkg{foreach} (see the
examples below).
\code{rfeIter} is the basic algorithm while \code{rfe} wraps these
operations inside of resampling. To avoid selection bias, it is better to
use the function \code{rfe} than \code{rfeIter}.
When updating a model, if the entire set of resamples were not saved using
\code{rfeControl(returnResamp = "final")}, the existing resamples are
removed with a warning.
}
\note{
We using a recipe as an input, there may be some subset
sizes that are not well-replicated over resamples. `rfe` method
will only consider subset sizes where at least half of the
resamples have associated results in the search for an optimal
subset size.
}
\examples{
\dontrun{
data(BloodBrain)
x <- scale(bbbDescr[,-nearZeroVar(bbbDescr)])
x <- x[, -findCorrelation(cor(x), .8)]
x <- as.data.frame(x, stringsAsFactors = TRUE)
set.seed(1)
lmProfile <- rfe(x, logBBB,
sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
rfeControl = rfeControl(functions = lmFuncs,
number = 200))
set.seed(1)
lmProfile2 <- rfe(x, logBBB,
sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
rfeControl = rfeControl(functions = lmFuncs,
rerank = TRUE,
number = 200))
xyplot(lmProfile$results$RMSE + lmProfile2$results$RMSE ~
lmProfile$results$Variables,
type = c("g", "p", "l"),
auto.key = TRUE)
rfProfile <- rfe(x, logBBB,
sizes = c(2, 5, 10, 20),
rfeControl = rfeControl(functions = rfFuncs))
bagProfile <- rfe(x, logBBB,
sizes = c(2, 5, 10, 20),
rfeControl = rfeControl(functions = treebagFuncs))
set.seed(1)
svmProfile <- rfe(x, logBBB,
sizes = c(2, 5, 10, 20),
rfeControl = rfeControl(functions = caretFuncs,
number = 200),
## pass options to train()
method = "svmRadial")
## classification
data(mdrr)
mdrrDescr <- mdrrDescr[,-nearZeroVar(mdrrDescr)]
mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .8)]
set.seed(1)
inTrain <- createDataPartition(mdrrClass, p = .75, list = FALSE)[,1]
train <- mdrrDescr[ inTrain, ]
test <- mdrrDescr[-inTrain, ]
trainClass <- mdrrClass[ inTrain]
testClass <- mdrrClass[-inTrain]
set.seed(2)
ldaProfile <- rfe(train, trainClass,
sizes = c(1:10, 15, 30),
rfeControl = rfeControl(functions = ldaFuncs, method = "cv"))
plot(ldaProfile, type = c("o", "g"))
postResample(predict(ldaProfile, test), testClass)
}
#######################################
## Parallel Processing Example via multicore
\dontrun{
library(doMC)
## Note: if the underlying model also uses foreach, the
## number of cores specified above will double (along with
## the memory requirements)
registerDoMC(cores = 2)
set.seed(1)
lmProfile <- rfe(x, logBBB,
sizes = c(2:25, 30, 35, 40, 45, 50, 55, 60, 65),
rfeControl = rfeControl(functions = lmFuncs,
number = 200))
}
}
\seealso{
\code{\link{rfeControl}}
}
\author{
Max Kuhn
}
\keyword{models}
|