1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/gafs.R, R/safs.R
\name{gafsControl}
\alias{gafsControl}
\alias{safsControl}
\title{Control parameters for GA and SA feature selection}
\usage{
gafsControl(
functions = NULL,
method = "repeatedcv",
metric = NULL,
maximize = NULL,
number = ifelse(grepl("cv", method), 10, 25),
repeats = ifelse(grepl("cv", method), 1, 5),
verbose = FALSE,
returnResamp = "final",
p = 0.75,
index = NULL,
indexOut = NULL,
seeds = NULL,
holdout = 0,
genParallel = FALSE,
allowParallel = TRUE
)
safsControl(
functions = NULL,
method = "repeatedcv",
metric = NULL,
maximize = NULL,
number = ifelse(grepl("cv", method), 10, 25),
repeats = ifelse(grepl("cv", method), 1, 5),
verbose = FALSE,
returnResamp = "final",
p = 0.75,
index = NULL,
indexOut = NULL,
seeds = NULL,
holdout = 0,
improve = Inf,
allowParallel = TRUE
)
}
\arguments{
\item{functions}{a list of functions for model fitting, prediction etc (see
Details below)}
\item{method}{The resampling method: \code{boot}, \code{boot632}, \code{cv},
\code{repeatedcv}, \code{LOOCV}, \code{LGOCV} (for repeated training/test
splits)}
\item{metric}{a two-element string that specifies what summary metric will
be used to select the optimal number of iterations from the external fitness
value and which metric should guide subset selection. If specified, this
vector should have names \code{"internal"} and \code{"external"}. See
\code{\link{gafs}} and/or \code{\link{safs}} for explanations of the
difference.}
\item{maximize}{a two-element logical: should the metrics be maximized or
minimized? Like the \code{metric} argument, this this vector should have
names \code{"internal"} and \code{"external"}.}
\item{number}{Either the number of folds or number of resampling iterations}
\item{repeats}{For repeated k-fold cross-validation only: the number of
complete sets of folds to compute}
\item{verbose}{a logical for printing results}
\item{returnResamp}{A character string indicating how much of the resampled
summary metrics should be saved. Values can be ``all'' or ``none''}
\item{p}{For leave-group out cross-validation: the training percentage}
\item{index}{a list with elements for each resampling iteration. Each list
element is the sample rows used for training at that iteration.}
\item{indexOut}{a list (the same length as \code{index}) that dictates which
sample are held-out for each resample. If \code{NULL}, then the unique set
of samples not contained in \code{index} is used.}
\item{seeds}{a vector or integers that can be used to set the seed during
each search. The number of seeds must be equal to the number of resamples
plus one.}
\item{holdout}{the proportion of data in [0, 1) to be held-back from
\code{x} and \code{y} to calculate the internal fitness values}
\item{genParallel}{if a parallel backend is loaded and available, should
\code{\link{gafs}} use it tp parallelize the fitness calculations within a
generation within a resample?}
\item{allowParallel}{if a parallel backend is loaded and available, should
the function use it?}
\item{improve}{the number of iterations without improvement before
\code{\link{safs}} reverts back to the previous optimal subset}
}
\value{
An echo of the parameters specified
}
\description{
Control the computational nuances of the \code{\link{gafs}} and
\code{\link{safs}} functions
Many of these options are the same as those described for
\code{\link[caret]{trainControl}}. More extensive documentation and examples
can be found on the \pkg{caret} website at
\url{http://topepo.github.io/caret/feature-selection-using-genetic-algorithms.html#syntax} and
\url{http://topepo.github.io/caret/feature-selection-using-simulated-annealing.html#syntax}.
The \code{functions} component contains the information about how the model
should be fit and summarized. It also contains the elements needed for the
GA and SA modules (e.g. cross-over, etc).
The elements of \code{functions} that are the same for GAs and SAs are:
\itemize{
\item \code{fit}, with arguments \code{x}, \code{y}, \code{lev},
\code{last}, and \code{...}, is used to fit the classification or regression
model
\item \code{pred}, with arguments \code{object} and \code{x}, predicts
new samples
\item \code{fitness_intern}, with arguments \code{object},
\code{x}, \code{y}, \code{maximize}, and \code{p}, summarizes performance
for the internal estimates of fitness
\item \code{fitness_extern}, with
arguments \code{data}, \code{lev}, and \code{model}, summarizes performance
using the externally held-out samples
\item \code{selectIter}, with
arguments \code{x}, \code{metric}, and \code{maximize}, determines the best
search iteration for feature selection.
}
The elements of \code{functions} specific to genetic algorithms are:
\itemize{
\item \code{initial}, with arguments \code{vars}, \code{popSize}
and \code{...}, creates an initial population.
\item \code{selection}, with
arguments \code{population}, \code{fitness}, \code{r}, \code{q}, and
\code{...}, conducts selection of individuals.
\item \code{crossover}, with
arguments \code{population}, \code{fitness}, \code{parents} and \code{...},
control genetic reproduction.
\item \code{mutation}, with arguments
\code{population}, \code{parent} and \code{...}, adds mutations.
}
The elements of \code{functions} specific to simulated annealing are:
\itemize{
\item \code{initial}, with arguments \code{vars}, \code{prob}, and
\code{...}, creates the initial subset.
\item \code{perturb}, with
arguments \code{x}, \code{vars}, and \code{number}, makes incremental
changes to the subsets.
\item \code{prob}, with arguments \code{old},
\code{new}, and \code{iteration}, computes the acceptance probabilities
}
The pages \url{http://topepo.github.io/caret/feature-selection-using-genetic-algorithms.html} and
\url{http://topepo.github.io/caret/feature-selection-using-simulated-annealing.html} have more details about each of
these functions.
\code{holdout} can be used to hold out samples for computing the internal
fitness value. Note that this is independent of the external resampling
step. Suppose 10-fold CV is being used. Within a resampling iteration,
\code{holdout} can be used to sample an additional proportion of the 90\%
resampled data to use for estimating fitness. This may not be a good idea
unless you have a very large training set and want to avoid an internal
resampling procedure to estimate fitness.
The search algorithms can be parallelized in several places:
\enumerate{
\item each externally resampled GA or SA can be run independently
(controlled by the \code{allowParallel} options)
\item within a GA, the
fitness calculations at a particular generation can be run in parallel over
the current set of individuals (see the \code{genParallel})
\item if inner resampling is used, these can be run in parallel (controls depend on the
function used. See, for example, \code{\link[caret]{trainControl}})
\item any parallelization of the individual model fits. This is also specific to the modeling function.
}
It is probably best to pick one of these areas for parallelization and the
first is likely to produces the largest decrease in run-time since it is the
least likely to incur multiple re-starting of the worker processes. Keep in
mind that if multiple levels of parallelization occur, this can effect the
number of workers and the amount of memory required exponentially.
}
\references{
\url{http://topepo.github.io/caret/feature-selection-using-genetic-algorithms.html},
\url{http://topepo.github.io/caret/feature-selection-using-simulated-annealing.html}
}
\seealso{
\code{\link{safs}}, \code{\link{safs}}, , \code{\link{caretGA}},
\code{\link{rfGA}}, \code{\link{treebagGA}}, \code{\link{caretSA}},
\code{\link{rfSA}}, \code{\link{treebagSA}}
}
\author{
Max Kuhn
}
\keyword{utilities}
|