1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/negPredValue.R, R/posPredValue.R,
% R/sensitivity.R, R/specificity.R
\name{negPredValue}
\alias{negPredValue}
\alias{negPredValue.default}
\alias{negPredValue.table}
\alias{negPredValue.matrix}
\alias{posPredValue}
\alias{posPredValue.default}
\alias{posPredValue.table}
\alias{posPredValue.matrix}
\alias{sensitivity}
\alias{sensitivity.default}
\alias{sensitivity.table}
\alias{sensitivity.matrix}
\alias{specificity}
\alias{specificity.default}
\alias{specificity.table}
\alias{specificity.matrix}
\title{Calculate sensitivity, specificity and predictive values}
\usage{
negPredValue(data, ...)
\method{negPredValue}{default}(
data,
reference,
negative = levels(reference)[2],
prevalence = NULL,
...
)
\method{negPredValue}{table}(data, negative = rownames(data)[-1], prevalence = NULL, ...)
\method{negPredValue}{matrix}(data, negative = rownames(data)[-1], prevalence = NULL, ...)
posPredValue(data, ...)
\method{posPredValue}{default}(
data,
reference,
positive = levels(reference)[1],
prevalence = NULL,
...
)
\method{posPredValue}{table}(data, positive = rownames(data)[1], prevalence = NULL, ...)
\method{posPredValue}{matrix}(data, positive = rownames(data)[1], prevalence = NULL, ...)
sensitivity(data, ...)
\method{sensitivity}{default}(
data,
reference,
positive = levels(reference)[1],
na.rm = TRUE,
...
)
\method{sensitivity}{table}(data, positive = rownames(data)[1], ...)
\method{sensitivity}{matrix}(data, positive = rownames(data)[1], ...)
specificity(data, ...)
\method{specificity}{default}(
data,
reference,
negative = levels(reference)[-1],
na.rm = TRUE,
...
)
\method{specificity}{table}(data, negative = rownames(data)[-1], ...)
}
\arguments{
\item{data}{for the default functions, a factor containing the discrete
measurements. For the \code{table} or \code{matrix} functions, a table or
matric object, respectively.}
\item{...}{not currently used}
\item{reference}{a factor containing the reference values}
\item{negative}{a character string that defines the factor level
corresponding to the "negative" results}
\item{prevalence}{a numeric value for the rate of the "positive" class of
the data}
\item{positive}{a character string that defines the factor level
corresponding to the "positive" results}
\item{na.rm}{a logical value indicating whether \code{NA} values should be
stripped before the computation proceeds}
}
\value{
A number between 0 and 1 (or NA).
}
\description{
These functions calculate the sensitivity, specificity or predictive values
of a measurement system compared to a reference results (the truth or a gold
standard). The measurement and "truth" data must have the same two possible
outcomes and one of the outcomes must be thought of as a "positive" results.
}
\details{
The sensitivity is defined as the proportion of positive results out of the
number of samples which were actually positive. When there are no positive
results, sensitivity is not defined and a value of \code{NA} is returned.
Similarly, when there are no negative results, specificity is not defined
and a value of \code{NA} is returned. Similar statements are true for
predictive values.
The positive predictive value is defined as the percent of predicted
positives that are actually positive while the negative predictive value is
defined as the percent of negative positives that are actually negative.
Suppose a 2x2 table with notation
\tabular{rcc}{ \tab Reference \tab \cr Predicted \tab Event \tab No Event
\cr Event \tab A \tab B \cr No Event \tab C \tab D \cr }
The formulas used here are: \deqn{Sensitivity = A/(A+C)} \deqn{Specificity =
D/(B+D)} \deqn{Prevalence = (A+C)/(A+B+C+D)} \deqn{PPV = (sensitivity *
Prevalence)/((sensitivity*Prevalence) + ((1-specificity)*(1-Prevalence)))}
\deqn{NPV = (specificity * (1-Prevalence))/(((1-sensitivity)*Prevalence) +
((specificity)*(1-Prevalence)))}
See the references for discussions of the statistics.
}
\examples{
\dontrun{
###################
## 2 class example
lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)),
levels = rev(lvs))
pred <- factor(
c(
rep(lvs, times = c(54, 32)),
rep(lvs, times = c(27, 231))),
levels = rev(lvs))
xtab <- table(pred, truth)
sensitivity(pred, truth)
sensitivity(xtab)
posPredValue(pred, truth)
posPredValue(pred, truth, prevalence = 0.25)
specificity(pred, truth)
negPredValue(pred, truth)
negPredValue(xtab)
negPredValue(pred, truth, prevalence = 0.25)
prev <- seq(0.001, .99, length = 20)
npvVals <- ppvVals <- prev * NA
for(i in seq(along.with = prev))
{
ppvVals[i] <- posPredValue(pred, truth, prevalence = prev[i])
npvVals[i] <- negPredValue(pred, truth, prevalence = prev[i])
}
plot(prev, ppvVals,
ylim = c(0, 1),
type = "l",
ylab = "",
xlab = "Prevalence (i.e. prior)")
points(prev, npvVals, type = "l", col = "red")
abline(h=sensitivity(pred, truth), lty = 2)
abline(h=specificity(pred, truth), lty = 2, col = "red")
legend(.5, .5,
c("ppv", "npv", "sens", "spec"),
col = c("black", "red", "black", "red"),
lty = c(1, 1, 2, 2))
###################
## 3 class example
library(MASS)
fit <- lda(Species ~ ., data = iris)
model <- predict(fit)$class
irisTabs <- table(model, iris$Species)
## When passing factors, an error occurs with more
## than two levels
sensitivity(model, iris$Species)
## When passing a table, more than two levels can
## be used
sensitivity(irisTabs, "versicolor")
specificity(irisTabs, c("setosa", "virginica"))
}
}
\references{
Kuhn, M. (2008), ``Building predictive models in R using the
caret package, '' \emph{Journal of Statistical Software},
(\doi{10.18637/jss.v028.i05}).
Altman, D.G., Bland, J.M. (1994) ``Diagnostic tests 1: sensitivity and
specificity,'' \emph{British Medical Journal}, vol 308, 1552.
Altman, D.G., Bland, J.M. (1994) ``Diagnostic tests 2: predictive values,''
\emph{British Medical Journal}, vol 309, 102.
}
\seealso{
\code{\link{confusionMatrix}}
}
\author{
Max Kuhn
}
\keyword{manip}
|