1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/spatialSign.R
\name{spatialSign}
\alias{spatialSign}
\alias{spatialSign.default}
\alias{spatialSign.matrix}
\alias{spatialSign.data.frame}
\title{Compute the multivariate spatial sign}
\usage{
spatialSign(x, ...)
\method{spatialSign}{default}(x, na.rm = TRUE, ...)
\method{spatialSign}{matrix}(x, na.rm = TRUE, ...)
\method{spatialSign}{data.frame}(x, na.rm = TRUE, ...)
}
\arguments{
\item{x}{an object full of numeric data (which should probably
be scaled). Factors are not allowed. This could be a vector,
matrix or data frame.}
\item{...}{Not currently used.}
\item{na.rm}{A logical; should missing data be removed when
computing the norm of the vector?}
}
\value{
A vector, matrix or data frame with the same dim names
of the original data.
}
\description{
Compute the spatial sign (a projection of a data vector to a
unit length circle). The spatial sign of a vector \code{w} is
\code{w /norm(w)}.
}
\examples{
spatialSign(rnorm(5))
spatialSign(matrix(rnorm(12), ncol = 3))
# should fail since the fifth column is a factor
try(spatialSign(iris), silent = TRUE)
spatialSign(iris[,-5])
trellis.par.set(caretTheme())
featurePlot(iris[,-5], iris[,5], "pairs")
featurePlot(spatialSign(scale(iris[,-5])), iris[,5], "pairs")
}
\references{
Serneels et al. Spatial sign preprocessing: a
simple way to impart moderate robustness to multivariate
estimators. J. Chem. Inf. Model (2006) vol. 46 (3) pp. 1402-1409
}
\author{
Max Kuhn
}
\keyword{manip}
|