1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/train.default.R
\name{train}
\alias{train}
\alias{train.default}
\alias{train.formula}
\alias{train.recipe}
\title{Fit Predictive Models over Different Tuning Parameters}
\usage{
train(x, ...)
\method{train}{default}(
x,
y,
method = "rf",
preProcess = NULL,
...,
weights = NULL,
metric = ifelse(is.factor(y), "Accuracy", "RMSE"),
maximize = ifelse(metric \%in\% c("RMSE", "logLoss", "MAE", "logLoss"), FALSE, TRUE),
trControl = trainControl(),
tuneGrid = NULL,
tuneLength = ifelse(trControl$method == "none", 1, 3)
)
\method{train}{formula}(form, data, ..., weights, subset, na.action = na.fail, contrasts = NULL)
\method{train}{recipe}(
x,
data,
method = "rf",
...,
metric = ifelse(is.factor(y_dat), "Accuracy", "RMSE"),
maximize = ifelse(metric \%in\% c("RMSE", "logLoss", "MAE"), FALSE, TRUE),
trControl = trainControl(),
tuneGrid = NULL,
tuneLength = ifelse(trControl$method == "none", 1, 3)
)
}
\arguments{
\item{x}{For the default method, \code{x} is an object where
samples are in rows and features are in columns. This could be a
simple matrix, data frame or other type (e.g. sparse matrix) but
must have column names (see Details below). Preprocessing using
the \code{preProcess} argument only supports matrices or data
frames. When using the recipe method, \code{x} should be an
unprepared [recipes::recipe()] object that describes the model
terms (i.e. outcome, predictors, etc.) as well as any
pre-processing that should be done to the data. This is an
alternative approach to specifying the model. Note that, when
using the recipe method, any arguments passed to \code{preProcess}
will be ignored. See the links and example below for more details
using recipes.}
\item{\dots}{Arguments passed to the classification or
regression routine (such as
\code{\link[randomForest]{randomForest}}). Errors will occur if
values for tuning parameters are passed here.}
\item{y}{A numeric or factor vector containing the outcome for
each sample.}
\item{method}{A string specifying which classification or
regression model to use. Possible values are found using
\code{names(getModelInfo())}. See
\url{http://topepo.github.io/caret/train-models-by-tag.html}. A
list of functions can also be passed for a custom model
function. See
\url{http://topepo.github.io/caret/using-your-own-model-in-train.html}
for details.}
\item{preProcess}{A string vector that defines a pre-processing
of the predictor data. Current possibilities are "BoxCox",
"YeoJohnson", "expoTrans", "center", "scale", "range",
"knnImpute", "bagImpute", "medianImpute", "pca", "ica" and
"spatialSign". The default is no pre-processing. See
\code{\link{preProcess}} and \code{\link{trainControl}} on the
procedures and how to adjust them. Pre-processing code is only
designed to work when \code{x} is a simple matrix or data frame.}
\item{weights}{A numeric vector of case weights. This argument
will only affect models that allow case weights.}
\item{metric}{A string that specifies what summary metric will
be used to select the optimal model. By default, possible values
are "RMSE" and "Rsquared" for regression and "Accuracy" and
"Kappa" for classification. If custom performance metrics are
used (via the \code{summaryFunction} argument in
\code{\link{trainControl}}, the value of \code{metric} should
match one of the arguments. If it does not, a warning is issued
and the first metric given by the \code{summaryFunction} is
used. (NOTE: If given, this argument must be named.)}
\item{maximize}{A logical: should the metric be maximized or
minimized?}
\item{trControl}{A list of values that define how this function
acts. See \code{\link{trainControl}} and
\url{http://topepo.github.io/caret/using-your-own-model-in-train.html}.
(NOTE: If given, this argument must be named.)}
\item{tuneGrid}{A data frame with possible tuning values. The
columns are named the same as the tuning parameters. Use
\code{\link{getModelInfo}} to get a list of tuning parameters
for each model or see
\url{http://topepo.github.io/caret/available-models.html}.
(NOTE: If given, this argument must be named.)}
\item{tuneLength}{An integer denoting the amount of granularity
in the tuning parameter grid. By default, this argument is the
number of levels for each tuning parameters that should be
generated by \code{\link{train}}. If \code{\link{trainControl}}
has the option \code{search = "random"}, this is the maximum
number of tuning parameter combinations that will be generated
by the random search. (NOTE: If given, this argument must be
named.)}
\item{form}{A formula of the form \code{y ~ x1 + x2 + ...}}
\item{data}{Data frame from which variables specified in
\code{formula} or \code{recipe} are preferentially to be taken.}
\item{subset}{An index vector specifying the cases to be used
in the training sample. (NOTE: If given, this argument must be
named.)}
\item{na.action}{A function to specify the action to be taken
if NAs are found. The default action is for the procedure to
fail. An alternative is \code{na.omit}, which leads to rejection
of cases with missing values on any required variable. (NOTE: If
given, this argument must be named.)}
\item{contrasts}{A list of contrasts to be used for some or all
the factors appearing as variables in the model formula.}
}
\value{
A list is returned of class \code{train} containing:
\item{method }{The chosen model.} \item{modelType }{An
identifier of the model type.} \item{results }{A data frame the
training error rate and values of the tuning parameters.}
\item{bestTune }{A data frame with the final parameters.}
\item{call}{The (matched) function call with dots expanded}
\item{dots}{A list containing any ... values passed to the
original call} \item{metric}{A string that specifies what
summary metric will be used to select the optimal model.}
\item{control}{The list of control parameters.} \item{preProcess
}{Either \code{NULL} or an object of class
\code{\link{preProcess}}} \item{finalModel}{A fit object using
the best parameters} \item{trainingData}{A data frame}
\item{resample}{A data frame with columns for each performance
metric. Each row corresponds to each resample. If leave-one-out
cross-validation or out-of-bag estimation methods are requested,
this will be \code{NULL}. The \code{returnResamp} argument of
\code{\link{trainControl}} controls how much of the resampled
results are saved.} \item{perfNames}{A character vector of
performance metrics that are produced by the summary function}
\item{maximize}{A logical recycled from the function arguments.}
\item{yLimits}{The range of the training set outcomes.}
\item{times}{A list of execution times: \code{everything} is for
the entire call to \code{train}, \code{final} for the final
model fit and, optionally, \code{prediction} for the time to
predict new samples (see \code{\link{trainControl}})}
}
\description{
This function sets up a grid of tuning parameters for a number
of classification and regression routines, fits each model and
calculates a resampling based performance measure.
}
\details{
\code{train} can be used to tune models by picking the
complexity parameters that are associated with the optimal
resampling statistics. For particular model, a grid of
parameters (if any) is created and the model is trained on
slightly different data for each candidate combination of tuning
parameters. Across each data set, the performance of held-out
samples is calculated and the mean and standard deviation is
summarized for each combination. The combination with the
optimal resampling statistic is chosen as the final model and
the entire training set is used to fit a final model.
The predictors in \code{x} can be most any object as long as
the underlying model fit function can deal with the object
class. The function was designed to work with simple matrices
and data frame inputs, so some functionality may not work (e.g.
pre-processing). When using string kernels, the vector of
character strings should be converted to a matrix with a single
column.
More details on this function can be found at
\url{http://topepo.github.io/caret/model-training-and-tuning.html}.
A variety of models are currently available and are enumerated
by tag (i.e. their model characteristics) at
\url{http://topepo.github.io/caret/train-models-by-tag.html}.
More details on using recipes can be found at
\url{http://topepo.github.io/caret/using-recipes-with-train.html}.
Note that case weights can be passed into \code{train} using a
role of \code{"case weight"} for a single variable. Also, if
there are non-predictor columns that should be used when
determining the model's performance metrics, the role of
\code{"performance var"} can be used with multiple columns and
these will be made available during resampling to the
\code{summaryFunction} function.
}
\examples{
\dontrun{
#######################################
## Classification Example
data(iris)
TrainData <- iris[,1:4]
TrainClasses <- iris[,5]
knnFit1 <- train(TrainData, TrainClasses,
method = "knn",
preProcess = c("center", "scale"),
tuneLength = 10,
trControl = trainControl(method = "cv"))
knnFit2 <- train(TrainData, TrainClasses,
method = "knn",
preProcess = c("center", "scale"),
tuneLength = 10,
trControl = trainControl(method = "boot"))
library(MASS)
nnetFit <- train(TrainData, TrainClasses,
method = "nnet",
preProcess = "range",
tuneLength = 2,
trace = FALSE,
maxit = 100)
#######################################
## Regression Example
library(mlbench)
data(BostonHousing)
lmFit <- train(medv ~ . + rm:lstat,
data = BostonHousing,
method = "lm")
library(rpart)
rpartFit <- train(medv ~ .,
data = BostonHousing,
method = "rpart",
tuneLength = 9)
#######################################
## Example with a custom metric
madSummary <- function (data,
lev = NULL,
model = NULL) {
out <- mad(data$obs - data$pred,
na.rm = TRUE)
names(out) <- "MAD"
out
}
robustControl <- trainControl(summaryFunction = madSummary)
marsGrid <- expand.grid(degree = 1, nprune = (1:10) * 2)
earthFit <- train(medv ~ .,
data = BostonHousing,
method = "earth",
tuneGrid = marsGrid,
metric = "MAD",
maximize = FALSE,
trControl = robustControl)
#######################################
## Example with a recipe
data(cox2)
cox2 <- cox2Descr
cox2$potency <- cox2IC50
library(recipes)
cox2_recipe <- recipe(potency ~ ., data = cox2) \%>\%
## Log the outcome
step_log(potency, base = 10) \%>\%
## Remove sparse and unbalanced predictors
step_nzv(all_predictors()) \%>\%
## Surface area predictors are highly correlated so
## conduct PCA just on these.
step_pca(contains("VSA"), prefix = "surf_area_",
threshold = .95) \%>\%
## Remove other highly correlated predictors
step_corr(all_predictors(), -starts_with("surf_area_"),
threshold = .90) \%>\%
## Center and scale all of the non-PCA predictors
step_center(all_predictors(), -starts_with("surf_area_")) \%>\%
step_scale(all_predictors(), -starts_with("surf_area_"))
set.seed(888)
cox2_lm <- train(cox2_recipe,
data = cox2,
method = "lm",
trControl = trainControl(method = "cv"))
#######################################
## Parallel Processing Example via multicore package
## library(doMC)
## registerDoMC(2)
## NOTE: don't run models form RWeka when using
### multicore. The session will crash.
## The code for train() does not change:
set.seed(1)
usingMC <- train(medv ~ .,
data = BostonHousing,
method = "glmboost")
## or use:
## library(doMPI) or
## library(doParallel) or
## library(doSMP) and so on
}
}
\references{
\url{http://topepo.github.io/caret/}
Kuhn (2008), ``Building Predictive Models in R Using the caret''
(\doi{10.18637/jss.v028.i05})
\url{https://topepo.github.io/recipes/}
}
\seealso{
\code{\link{models}}, \code{\link{trainControl}},
\code{\link{update.train}}, \code{\link{modelLookup}},
\code{\link{createFolds}}, \code{\link[recipes]{recipe}}
}
\author{
Max Kuhn (the guts of \code{train.formula} were based
on Ripley's \code{nnet.formula})
}
\keyword{models}
|