1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/safs.R
\name{update.safs}
\alias{update.safs}
\alias{update.gafs}
\title{Update or Re-fit a SA or GA Model}
\usage{
\method{update}{safs}(object, iter, x, y, ...)
}
\arguments{
\item{object}{An object produced by \code{\link{gafs}} or \code{\link{safs}}}
\item{iter}{a single numeric integer}
\item{x, y}{the original training data used in the call to \code{\link{gafs}}
or \code{\link{safs}}. Only required for non-recipe methods.}
\item{\dots}{not currently used}
}
\value{
an object of class \code{\link{gafs}} or \code{\link{safs}}
}
\description{
\code{update} allows a user to over-ride the search iteration selection
process.
Based on the results of plotting a \code{\link{gafs}} or \code{\link{safs}}
object, these functions can be used to supersede the number of iterations
determined analytically from the resamples.
Any values of \code{...} originally passed to \code{\link{gafs}} or
\code{\link{safs}} are automatically passed on to the updated model (i.e.
they do not need to be supplied again to \code{update}.
}
\examples{
\dontrun{
set.seed(1)
train_data <- twoClassSim(100, noiseVars = 10)
test_data <- twoClassSim(10, noiseVars = 10)
## A short example
ctrl <- safsControl(functions = rfSA,
method = "cv",
number = 3)
rf_search <- safs(x = train_data[, -ncol(train_data)],
y = train_data$Class,
iters = 3,
safsControl = ctrl)
rf_search2 <- update(rf_search,
iter = 1,
x = train_data[, -ncol(train_data)],
y = train_data$Class)
rf_search2
}
}
\seealso{
\code{\link{gafs}}, \code{\link{safs}}
}
\author{
Max Kuhn
}
\keyword{models}
|