File: update.safs.Rd

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (65 lines) | stat: -rw-r--r-- 1,788 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/safs.R
\name{update.safs}
\alias{update.safs}
\alias{update.gafs}
\title{Update or Re-fit a SA or GA Model}
\usage{
\method{update}{safs}(object, iter, x, y, ...)
}
\arguments{
\item{object}{An object produced by \code{\link{gafs}} or \code{\link{safs}}}

\item{iter}{a single numeric integer}

\item{x, y}{the original training data used in the call to \code{\link{gafs}}
or \code{\link{safs}}. Only required for non-recipe methods.}

\item{\dots}{not currently used}
}
\value{
an object of class \code{\link{gafs}} or \code{\link{safs}}
}
\description{
\code{update} allows a user to over-ride the search iteration selection
process.

Based on the results of plotting a \code{\link{gafs}} or \code{\link{safs}}
object, these functions can be used to supersede the number of iterations
determined analytically from the resamples.

Any values of \code{...} originally passed to \code{\link{gafs}} or
\code{\link{safs}} are automatically passed on to the updated model (i.e.
they do not need to be supplied again to \code{update}.
}
\examples{

\dontrun{
set.seed(1)
train_data <- twoClassSim(100, noiseVars = 10)
test_data  <- twoClassSim(10,  noiseVars = 10)

## A short example
ctrl <- safsControl(functions = rfSA,
                    method = "cv",
                    number = 3)

rf_search <- safs(x = train_data[, -ncol(train_data)],
                  y = train_data$Class,
                  iters = 3,
                  safsControl = ctrl)

rf_search2 <- update(rf_search,
	                 iter = 1,
	                 x = train_data[, -ncol(train_data)],
                     y = train_data$Class)
rf_search2
}
}
\seealso{
\code{\link{gafs}}, \code{\link{safs}}
}
\author{
Max Kuhn
}
\keyword{models}