1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/resamples.R
\name{xyplot.resamples}
\alias{xyplot.resamples}
\alias{densityplot.resamples}
\alias{bwplot.resamples}
\alias{splom.resamples}
\alias{parallelplot.resamples}
\alias{dotplot.resamples}
\alias{ggplot.resamples}
\title{Lattice Functions for Visualizing Resampling Results}
\usage{
\method{xyplot}{resamples}(
x,
data = NULL,
what = "scatter",
models = NULL,
metric = x$metric[1],
units = "min",
...
)
\method{parallelplot}{resamples}(x, data = NULL, models = x$models, metric = x$metric[1], ...)
\method{splom}{resamples}(
x,
data = NULL,
variables = "models",
models = x$models,
metric = NULL,
panelRange = NULL,
...
)
\method{densityplot}{resamples}(x, data = NULL, models = x$models, metric = x$metric, ...)
\method{bwplot}{resamples}(x, data = NULL, models = x$models, metric = x$metric, ...)
\method{dotplot}{resamples}(
x,
data = NULL,
models = x$models,
metric = x$metric,
conf.level = 0.95,
...
)
\method{ggplot}{resamples}(
data = NULL,
mapping = NULL,
environment = NULL,
models = data$models,
metric = data$metric[1],
conf.level = 0.95,
...
)
}
\arguments{
\item{x}{an object generated by \code{resamples}}
\item{data}{Only used for the \code{ggplot} method; an object generated by
\code{resamples}}
\item{what}{for \code{xyplot}, the type of plot. Valid options are:
"scatter" (for a plot of the resampled results between two models),
"BlandAltman" (a Bland-Altman, aka MA plot between two models), "tTime" (for
the total time to run \code{train} versus the metric), "mTime" (for the time
to build the final model) or "pTime" (the time to predict samples - see the
\code{timingSamps} options in \code{\link{trainControl}},
\code{\link{rfeControl}}, or \code{\link{sbfControl}})}
\item{models}{a character string for which models to plot. Note:
\code{xyplot} requires one or two models whereas the other methods can plot
more than two.}
\item{metric}{a character string for which metrics to use as conditioning
variables in the plot. \code{splom} requires exactly one metric when
\code{variables = "models"} and at least two when \code{variables =
"metrics"}.}
\item{units}{either "sec", "min" or "hour"; which \code{what} is either
"tTime", "mTime" or "pTime", how should the timings be scaled?}
\item{\dots}{further arguments to pass to either
\code{\link[lattice:histogram]{histogram}},
\code{\link[lattice:histogram]{densityplot}},
\code{\link[lattice:xyplot]{xyplot}}, \code{\link[lattice:xyplot]{dotplot}}
or \code{\link[lattice:splom]{splom}}}
\item{variables}{either "models" or "metrics"; which variable should be
treated as the scatter plot variables?}
\item{panelRange}{a common range for the panels. If \code{NULL}, the panel
ranges are derived from the values across all the models}
\item{conf.level}{the confidence level for intervals about the mean
(obtained using \code{\link[stats]{t.test}})}
\item{mapping, environment}{Not used.}
}
\value{
a lattice object
}
\description{
Lattice and ggplot functions for visualizing resampling results across models
}
\details{
The ideas and methods here are based on Hothorn et al. (2005) and Eugster et
al. (2008).
\code{dotplot} and \code{ggplot} plots the average performance value (with two-sided
confidence limits) for each model and metric.
\code{densityplot} and \code{bwplot} display univariate visualizations of
the resampling distributions while \code{splom} shows the pair-wise
relationships.
}
\examples{
\dontrun{
#load(url("http://topepo.github.io/caret/exampleModels.RData"))
resamps <- resamples(list(CART = rpartFit,
CondInfTree = ctreeFit,
MARS = earthFit))
dotplot(resamps,
scales =list(x = list(relation = "free")),
between = list(x = 2))
bwplot(resamps,
metric = "RMSE")
densityplot(resamps,
auto.key = list(columns = 3),
pch = "|")
xyplot(resamps,
models = c("CART", "MARS"),
metric = "RMSE")
splom(resamps, metric = "RMSE")
splom(resamps, variables = "metrics")
parallelplot(resamps, metric = "RMSE")
}
}
\references{
Hothorn et al. The design and analysis of benchmark experiments.
Journal of Computational and Graphical Statistics (2005) vol. 14 (3) pp.
675-699
Eugster et al. Exploratory and inferential analysis of benchmark
experiments. Ludwigs-Maximilians-Universitat Munchen, Department of
Statistics, Tech. Rep (2008) vol. 30
}
\seealso{
\code{\link{resamples}}, \code{\link[lattice:xyplot]{dotplot}},
\code{\link[lattice:bwplot]{bwplot}},
\code{\link[lattice:histogram]{densityplot}},
\code{\link[lattice:xyplot]{xyplot}}, \code{\link[lattice:splom]{splom}}
}
\author{
Max Kuhn
}
\keyword{hplot}
|