File: test_misc.R

package info (click to toggle)
r-cran-caret 7.0-1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 4,036 kB
  • sloc: ansic: 210; sh: 10; makefile: 2
file content (57 lines) | stat: -rw-r--r-- 1,225 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

context('misc functions')


test_that("R2 and RMSE are calculating correctly", {

  pred <- runif(25)
  obs <- runif(25)

  expect_equal(R2(pred, obs), cor(obs, pred)^2)
  expect_equal(RMSE(pred, obs), sqrt(mean((pred - obs)^2)))

})


test_that("auc calculation is > .5 when Xs provide prediction", {
  skip_if_not_installed("MLmetrics")
  skip_if_not_installed("earth")
  skip_if_not_installed("mda")

  trCntlListMulti  <-
    trainControl(
      method = "cv",
      number = 3,
      verboseIter = FALSE,
      classProbs = TRUE,
      summaryFunction = multiClassSummary
    )

  set.seed(3453)
  knnFit <- train(Species ~ .,
                  data = iris,
                  method = "knn",
                  trControl = trCntlListMulti)

  expect_true(all(knnFit$resample$AUC > .5))

  library(caret)

  set.seed(1)
  tr_dat <- twoClassSim(200)
  te_dat <- tr_dat
  tr_dat$Class = factor(tr_dat$Class, levels = rev(levels(te_dat$Class)))

  modle <- train(
    Class ~ .,
    data = te_dat,
    method = "fda",
    tuneLength = 10,
    metric = "ROC",
    trControl = trainControl(classProbs = TRUE,
                             summaryFunction = twoClassSummary)
  )

  expect_true(all(modle$resample$AUC > .5))

})