1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
#' @import R6
NULL
#' @title Basic CF calendar
#'
#' @description This class represents a basic CF calendar. It should not be
#' instantiated directly; instead, use one of the descendant classes.
#'
#' This internal class stores the information to represent date and time
#' values using the CF conventions. An instance is created by the exported
#' [CFTime] class, which also exposes the relevant properties of this class.
#'
#' The following calendars are supported:
#'
#' \itemize{
#' \item [`gregorian\standard`][CFCalendarStandard], the international standard calendar for civil use.
#' \item [`proleptic_gregorian`][CFCalendarProleptic], the standard calendar but extending before 1582-10-15
#' when the Gregorian calendar was adopted.
#' \item [`tai`][CFCalendarTAI], International Atomic Time clock with dates expressed using the Gregorian calendar.
#' \item [`utc`][CFCalendarUTC], Coordinated Universal Time clock with dates expressed using the Gregorian calendar.
#' \item [`julian`][CFCalendarJulian], every fourth year is a leap year (so including the years 1700, 1800, 1900, 2100, etc).
#' \item [`noleap\365_day`][CFCalendar365], all years have 365 days.
#' \item [`all_leap\366_day`][CFCalendar366], all years have 366 days.
#' \item [`360_day`][CFCalendar360], all years have 360 days, divided over 12 months of 30 days.
#' }
#' @references
#' https://cfconventions.org/Data/cf-conventions/cf-conventions-1.12/cf-conventions.html#calendar
#' @docType class
CFCalendar <- R6::R6Class("CFCalendar",
public = list(
#' @field name Descriptive name of the calendar, as per the CF Metadata
#' Conventions.
name = "",
#' @field definition The string that defines the units and the origin, as
#' per the CF Metadata Conventions.
definition = "",
#' @field unit The numeric id of the unit of the calendar.
unit = -1L,
#' @field origin `data.frame` with fields for the origin of the calendar.
origin = data.frame(),
#' @description Create a new CF calendar.
#' @param nm The name of the calendar. This must follow the CF Metadata
#' Conventions.
#' @param definition The string that defines the units and the origin, as
#' per the CF Metadata Conventions.
initialize = function(nm, definition) {
stopifnot(length(definition) == 1L, length(nm) == 1L)
self$name <- tolower(nm)
self$definition <- definition
parts <- strsplit(definition, " ")[[1L]]
if ((length(parts) < 3L) || !(tolower(parts[2L]) %in% c("since", "after", "from", "ref", "per")))
stop("Definition string does not appear to be a CF-compliant time coordinate description", call. = FALSE)
u <- which(CFt$CFunits$unit == tolower(parts[1L]))
if (length(u) == 0L) stop("Unsupported unit: ", parts[1L], call. = FALSE)
self$unit <- CFt$CFunits$id[u]
dt <- self$parse(paste(parts[3L:length(parts)], collapse = " "))
if (is.na(dt$year[1L]))
stop("Definition string does not appear to be a CF-compliant time coordinate description: invalid base date specification", call. = FALSE)
self$origin <- dt
},
#' @description Print information about the calendar to the console.
#' @param ... Ignored.
#' @return `self`, invisibly.
print = function(...) {
tz <- self$timezone
if (tz == "+0000") tz <- ""
cat("CF calendar:",
"\n Origin : ", self$origin_date, " ", self$origin_time, tz,
"\n Units : ", CFt$units$name[self$unit],
"\n Type : ", self$name, "\n",
sep = "")
invisible(self)
},
#' @description Indicate which of the supplied dates are valid.
#' @param ymd `data.frame` with dates parsed into their parts in columns
#' `year`, `month` and `day`. Any other columns are disregarded.
#' @return `NULL`. A warning will be generated to the effect that a
#' descendant class should be used for this method.
valid_days = function(ymd) {
warning("Use a descendant class from `CFCalendar` to call this method.", call. = FALSE) # nocov
NULL # nocov
},
#' @description Indicate if the time series described using this calendar
#' can be safely converted to a standard date-time type (`POSIXct`,
#' `POSIXlt`, `Date`).
#'
#' Only the 'standard' calendar and the 'proleptic_gregorian' calendar
#' when all dates in the time series are more recent than 1582-10-15
#' (inclusive) can be safely converted, so this method returns `FALSE` by
#' default to cover the majority of cases.
#' @param offsets The offsets from the CFtime instance.
#' @return `FALSE` by default.
POSIX_compatible = function(offsets) {
FALSE
},
#' @description This method tests if the `CFCalendar` instance in argument
#' `cal` is compatible with `self`, meaning that they are of the same
#' class and have the same unit. Calendars "standard", and "gregorian" are
#' compatible, as are the pairs of "365_day" and "no_leap", and "366_day"
#' and "all_leap".
#' @param cal Instance of a descendant of the `CFCalendar` class.
#' @return `TRUE` if the instance in argument `cal` is compatible with
#' `self`, `FALSE` otherwise.
is_compatible = function(cal) {
self$unit == cal$unit && class(self)[1L] == class(cal)[1L]
},
#' @description This method tests if the `CFCalendar` instance in argument
#' `cal` is equivalent to `self`, meaning that they are of the same class,
#' have the same unit, and equivalent origins. Calendars "standard", and
#' "gregorian" are equivalent, as are the pairs of "365_day" and
#' "no_leap", and "366_day" and "all_leap".
#'
#' Note that the origins need not be identical, but their parsed values
#' have to be. "2000-01" is parsed the same as "2000-01-01 00:00:00", for
#' instance.
#' @param cal Instance of a descendant of the `CFCalendar` class.
#' @return `TRUE` if the instance in argument `cal` is equivalent to
#' `self`, `FALSE` otherwise.
is_equivalent = function(cal) {
sum(self$origin[1L,1L:6L] == cal$origin[1L,1L:6L]) == 6L && # Offset column is NA
self$is_compatible(cal)
},
#' @description Parsing a vector of date-time character strings into parts.
#' @param d character. A character vector of date-times.
#' @return A `data.frame` with columns year, month, day, hour, minute,
#' second, time zone, and offset. Invalid input data will appear as `NA`.
parse = function(d) {
# Parsers
# UDUNITS broken timestamp definition, with some changes
# broken_timestamp {broken_date}({space|T}+{broken_clock})? -- T not in definition but present in lexer code
# broken_date {year}-{month}(-{day})?
# year [+-]?[0-9]{1,4}
# month 0?[1-9]|1[0-2]
# day 0?[1-9]|[1-2][0-9]|30|31
# broken_clock {hour}:{minute}(:{second})?
# hour [0-1]?[0-9]|2[0-3] -- sign on hour not allowed, but see timezone
# minute [0-5]?[0-9]
# second {minute}? -- leap second not supported
# fractional part (\.[0-9]*)?
# timezone [+-]?{hour}(:{minute})? -- added, present in lexer code
broken <- paste0(
"^", # anchor string at start
"([+-]?[0-9]{1,4})", # year, with optional sign
"-(0?[1-9]|1[012])", # month
"(?:-(0?[1-9]|[12][0-9]|3[01]))?", # day, optional
"(?:[T ]", # if a time is following, separate with a single whitespace character or a "T"
"([01]?[0-9]|2[0-3])", # hour
":([0-5]?[0-9])", # minute
"(?::([0-5]?[0-9]))?", # second, optional
"(?:\\.([0-9]*))?", # optional fractional part of the smallest specified unit
")?", # close optional time capture group
"(?:\\s", # if a time zone offset is following, separate with a single whitespace character
"([+-])?([01]?[0-9]|2[0-3])", # tz hour, with optional sign
"(?::(00|15|30|45))?", # optional tz minute, only 4 possible values
")?", # close optional timezone capture group
"$" # anchor string at end
)
iso8601 <- paste0(
"^",
"([0-9]{4})",
"-(0[1-9]|1[012])",
"-(0[1-9]|[12][0-9]|3[01])?",
"(?:",
"[T ]([01][0-9]|2[0-3])",
"(?::([0-5][0-9]))?",
"(?::([0-5][0-9]))?",
"(?:[\\.,]([0-9]*))?",
")?",
"(?:([Z+-])([01][0-9]|2[0-3])?(?::(00|15|30|45))?", ## FIXME: Z?, smaller number of captures
")?$"
)
# UDUNITS packed timestamp definition - NOT YET USED
# packed_timestamp {packed_date}({space|T}+{packed_clock})? -- T and space only allowed in packed time follows
# packed_date {year}({month}{day}?)? -- must be YYYYMMDD or else format is ambiguous, as per lexer code
# packed_clock {hour}({minute}{second}?)? -- must be HHMMSS to be unambiguous
# timezone [+-]?{hour}({minute})? -- added, present in lexer code, must be HHMM
# packed <- stringi::stri_join(
# "^", # anchor string at start
# "([+-]?[0-9]{4})", # year, with optional sign
# "(0[1-9]|1[012])?", # month, optional
# "(0[1-9]|[12][0-9]|3[01])?", # day, optional
# "(?:[T,\\s]", # if a time is following, separate with a single whitespace character or a "T"
# "([01][0-9]|2[0-3])?", # hour
# "([0-5][0-9])?", # minute, optional
# "([0-5]?[0-9](?:\\.[0-9]*)?)?", # second, optional, with optional fractional part
# ")?", # close optional time capture group
# "(?:\\s", # if a time zone offset is following, separate with a single whitespace character
# "([+-]?[01][0-9]|2[0-3])?", # hour, with optional sign
# "(00|15|30|45)?", # minute, only 4 possible values
# ")?", # close optional timezone capture group
# "$" # anchor string at end
# )
parse <- data.frame(year = integer(), month = integer(), day = integer(),
hour = integer(), minute = integer(), second = numeric(), frac = character(),
tz_sign = character(), tz_hour = character(), tz_min = character())
# Drop "UTC", if given
d <- trimws(gsub("UTC$", "", d))
cap <- utils::strcapture(iso8601, d, parse)
missing <- which(is.na(cap$year))
if (length(missing) > 0L)
cap[missing,] <- utils::strcapture(broken, d[missing], parse)
# Assign any fraction to the appropriate time part
cap$frac[is.na(cap$frac)] <- "0"
frac <- as.numeric(paste0("0.", cap$frac))
if (sum(frac) > 0) {
ndx <- which(!(is.na(cap$second)) & frac > 0)
if (length(ndx) > 0L) cap$second[ndx] <- cap$second[ndx] + frac[ndx]
ndx <- which(!(is.na(cap$minute)) & is.na(cap$second) & frac > 0)
if (length(ndx) > 0L) cap$second[ndx] <- 60L * frac[ndx]
ndx <- which(!(is.na(cap$hour)) & is.na(cap$minute) & frac > 0)
if (length(ndx) > 0L) {
secs <- 3600 * frac
cap$minute[ndx] <- secs[ndx] %/% 60
cap$second[ndx] <- secs[ndx] %% 60
}
}
cap$frac <- NULL
# Convert NA time parts to 0 - in CF default time is 00:00:00 when not specified
cap$hour[is.na(cap$hour)] <- 0L
cap$minute[is.na(cap$minute)] <- 0L
cap$second[is.na(cap$second)] <- 0L
# Set timezone to default value where needed
ndx <- which(cap$tz_sign == "Z")
if (length(ndx) > 0L) {
cap$tz_sign[ndx] <- "+"
cap$tz_hour[ndx] <- "00"
cap$tz_min[ndx] <- "00"
}
cap$tz <- paste0(ifelse(cap$tz_sign == "", "+", cap$tz_sign),
ifelse(cap$tz_hour == "", "00", cap$tz_hour),
ifelse(cap$tz_min == "", "00", cap$tz_min))
cap$tz <- ifelse(cap$tz =="NANANA", "+0000", cap$tz)
cap$tz_sign <- cap$tz_hour <- cap$tz_min <- NULL
# Set optional date parts to 1 if not specified
cap$month[is.na(cap$month)] <- 1L
cap$day[is.na(cap$day)] <- 1L
# Check date validity
invalid <- !self$valid_days(cap)
invalid[is.na(invalid)] <- TRUE
if (sum(invalid) > 0L) cap[invalid,] <- rep(NA, 7)
# Calculate offsets
if (nrow(self$origin) == 0L) { # if there's no origin yet, don't calculate offsets
cap$offset <- rep(0, nrow(cap)) # this happens, f.i., when a CFCalendar is created
} else {
days <- self$date2offset(cap)
cap$offset <- round((days * 86400 + (cap$hour - self$origin$hour[1]) * 3600 +
(cap$minute - self$origin$minute[1]) * 60 +
cap$second - self$origin$second) / CFt$units$seconds[self$unit], 6)
}
cap
},
#' @description Decompose a vector of offsets, in units of the calendar, to
#' their timestamp values. This adds a specified amount of time to the
#' origin of a `CFTime` object.
#'
#' This method may introduce inaccuracies where the calendar unit is
#' "months" or "years", due to the ambiguous definition of these units.
#' @param offsets Vector of numeric offsets to add to the origin of the
#' calendar.
#' @return A `data.frame` with columns for the timestamp elements and as
#' many rows as there are offsets.
offsets2time = function(offsets = NULL) {
if(is.null(offsets) || (len <- length(offsets)) == 0L)
return(data.frame(year = integer(), month = integer(), day = integer(),
hour = integer(), minute = integer(), second = numeric(),
tz = character(), offset = numeric()))
if (self$unit <= 4L) { # Days, hours, minutes, seconds
# First add time: convert to seconds first, then recompute time parts
secs <- offsets * CFt$units$seconds[self$unit] +
self$origin$hour * 3600 + self$origin$minute * 60 + self$origin$second
days <- secs %/% 86400L # overflow days
secs <- round(secs %% 86400L, 3L) # drop overflow days from time, round down to milli-seconds to avoid errors
# Time elements for output
hrs <- secs %/% 3600L
mins <- (secs %% 3600L) %/% 60L
secs <- secs %% 60L
# Now add days using the calendar
out <- if (any(days != 0L))
self$offset2date(days)
else
data.frame(year = rep(self$origin$year, len),
month = rep(self$origin$month, len),
day = rep(self$origin$day, len))
# Put it all back together again
out$hour <- hrs
out$minute <- mins
out$second <- secs
out$tz <- rep(self$timezone, len)
} else { # Months, years
out <- self$origin[rep(1L, len), ]
if (self$unit == 5L) { # Offsets are months
months <- out$month + offsets - 1L
out$month <- months %% 12L + 1L
out$year <- out$year + months %/% 12L
} else { # Offsets are years
out$year <- out$year + offsets
}
}
out$offset <- offsets
out
}
),
active = list(
#' @field origin_date (read-only) Character string with the date of the
#' calendar.
origin_date = function(value) {
if (missing(value)) {
sprintf("%04d-%02d-%02d", self$origin$year, self$origin$month, self$origin$day)
}
},
#' @field origin_time (read-only) Character string with the time of the
#' calendar.
origin_time = function(value) {
if (missing(value)) {
.format_time(self$origin)
}
},
#' @field timezone (read-only) Character string with the time zone of the
#' origin of the calendar.
timezone = function(value) {
if (missing(value))
self$origin$tz
}
)
)
|