1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
#' @title Standard CF calendar
#'
#' @description This class represents a standard calendar of 365 or 366 days per
#' year. This calendar is compatible with the standard POSIXt calendar for
#' periods after the introduction of the Gregorian calendar, 1582-10-15
#' 00:00:00. The calendar starts at 0001-01-01 00:00:00, e.g. the start of the
#' Common Era.
#'
#' Note that this calendar, despite its name, is not the same as that used in
#' ISO8601 or many computer systems for periods prior to the introduction of
#' the Gregorian calendar. Use of the "proleptic_gregorian" calendar is
#' recommended for periods before or straddling the introduction date, as that
#' calendar is compatible with POSIXt on most OSes.
#'
#' @aliases CFCalendarStandard
#' @docType class
CFCalendarStandard <- R6::R6Class("CFCalendarStandard",
inherit = CFCalendar,
private = list(
# Rata Die, the number of days from the day before 0001-01-01 to
# origin of the Gregorian part of this calendar, if present. Used to
# convert offsets from the Gregorian calendar origin to the day before
# 0001-01-01 for arithmetic calculations.
rd_greg = 0L,
# Rata Die, the number of days from the day before 0001-01-01 to
# origin of the Julian part of this calendar, if present. Used to convert
# offsets from the Julian calendar origin to the day before 0001-01-01
#for arithmetic calculations.
rd_juli = 0L,
# The integer offset for 1582-10-15 00:00:00, when the Gregorian
# calendar started, or 1582-10-05, when the gap between Julian and
# Gregorian calendars started. The former is set when the calendar origin
# is more recent, the latter when the origin is prior to the gap.
gap = -1L
),
public = list(
#' @description Create a new CF calendar.
#' @param nm The name of the calendar. This must be "standard" or
#' "gregorian" (deprecated).
#' @param definition The string that defines the units and the origin, as
#' per the CF Metadata Conventions.
#' @return A new instance of this class.
initialize = function(nm, definition) {
super$initialize(nm, definition)
private$rd_greg <- .gregorian_date2offset(self$origin, self$leap_year(self$origin$year))
private$rd_juli <- .julian_date2offset(self$origin, self$leap_year(self$origin$year))
private$gap <- if (self$is_gregorian_date(self$origin))
.gregorian_date2offset(data.frame(year = 1582, month = 10, day = 15), self$leap_year(self$origin$year)) - private$rd_greg
else
.julian_date2offset(data.frame(year = 1582, month = 10, day = 5), self$leap_year(self$origin$year)) - private$rd_juli
},
#' @description Indicate which of the supplied dates are valid.
#' @param ymd `data.frame` with dates parsed into their parts in columns
#' `year`, `month` and `day`. Any other columns are disregarded.
#' @return Logical vector with the same length as argument `ymd` has rows
#' with `TRUE` for valid days and `FALSE` for invalid days, or `NA` where
#' the row in argument `ymd` has `NA` values.
valid_days = function(ymd) {
ymd$year >= 1L & ymd$month >= 1L & ymd$month <= 12L & ymd$day >= 1L &
ifelse(self$is_gregorian_date(ymd),
# Gregorian calendar
ifelse(self$leap_year(ymd$year),
ymd$day <= c(31L, 29L, 31L, 30L, 31L, 30L, 31L, 31L, 30L, 31L, 30L, 31L)[ymd$month],
ymd$day <= c(31L, 28L, 31L, 30L, 31L, 30L, 31L, 31L, 30L, 31L, 30L, 31L)[ymd$month]),
# Julian calendar
ifelse(ymd$year == 1582L & ymd$month == 10L & ymd$day > 4L,
FALSE, # days 1582-10-05 - 1582-10-14 do not exist
ifelse(ymd$year %% 4L == 0L,
ymd$day <= c(31L, 29L, 31L, 30L, 31L, 30L, 31L, 31L, 30L, 31L, 30L, 31L)[ymd$month],
ymd$day <= c(31L, 28L, 31L, 30L, 31L, 30L, 31L, 31L, 30L, 31L, 30L, 31L)[ymd$month])
)
)
},
#' @description Indicate which of the supplied dates are in the Gregorian
#' part of the calendar, e.g. 1582-10-15 or after.
#' @param ymd `data.frame` with dates parsed into their parts in columns
#' `year`, `month` and `day`. Any other columns are disregarded.
#' @return Logical vector with the same length as argument `ymd` has rows
#' with `TRUE` for days in the Gregorian part of the calendar and `FALSE`
#' otherwise, or `NA` where the row in argument `ymd` has `NA` values.
is_gregorian_date = function(ymd) {
ymd$year > 1582L | (ymd$year == 1582L & (ymd$month > 10L | (ymd$month == 10L & ymd$day >= 15L)))
},
#' @description Indicate if the time series described using this calendar
#' can be safely converted to a standard date-time type (`POSIXct`,
#' `POSIXlt`, `Date`). This is only the case if all offsets are for
#' timestamps fall on or after the start of the Gregorian calendar,
#' 1582-10-15 00:00:00.
#' @param offsets The offsets from the CFtime instance.
#' @return `TRUE`.
POSIX_compatible = function(offsets) {
all(offsets >= private$gap)
},
#' @description Determine the number of days in the month of the calendar.
#' @param ymd `data.frame`, optional, with dates parsed into their parts.
#' @return A vector indicating the number of days in each month for the
#' dates supplied as argument `ymd`. If no dates are supplied, the number
#' of days per month for the calendar as a vector of length 12, for a
#' regular year without a leap day.
month_days = function(ymd = NULL) {
if (is.null(ymd)) return(c(31L, 28L, 31L, 30L, 31L, 30L, 31L, 31L, 30L, 31L, 30L, 31L))
ifelse(self$leap_year(ymd$year),
c(31L, 29L, 31L, 30L, 31L, 30L, 31L, 31L, 30L, 31L, 30L, 31L)[ymd$month],
c(31L, 28L, 31L, 30L, 31L, 30L, 31L, 31L, 30L, 31L, 30L, 31L)[ymd$month])
},
#' @description Indicate which years are leap years.
#' @param yr Integer vector of years to test.
#' @return Logical vector with the same length as argument `yr`. `NA` is
#' returned where elements in argument `yr` are `NA`.
leap_year = function(yr) {
ifelse(yr <= 1582L,
yr %% 4L == 0L,
((yr %% 4L == 0L) & (yr %% 100L > 0L)) | (yr %% 400L == 0L)
)
},
#' @description Calculate difference in days between a `data.frame` of time
#' parts and the origin.
#'
#' @param x `data.frame`. Dates to calculate the difference for.
#' @return Integer vector of a length equal to the number of rows in
#' argument `x` indicating the number of days between `x` and the origin
#' of the calendar, or `NA` for rows in `x` with `NA` values.
date2offset = function(x) {
leap <- self$leap_year(x$year)
ifelse(self$is_gregorian_date(x),
.gregorian_date2offset(x, leap),
.julian_date2offset(x, leap)
) - if (private$gap > 0L) private$rd_juli else private$rd_greg
},
#' @description Calculate date parts from day differences from the origin. This
#' only deals with days as these are impacted by the calendar.
#' Hour-minute-second timestamp parts are handled in [CFCalendar].
#'
#' @param x Integer vector of days to add to the origin.
#' @return A `data.frame` with columns 'year', 'month' and 'day' and as many
#' rows as the length of vector `x`.
offset2date = function(x) {
rd <- if (private$gap > 0L) private$rd_juli else private$rd_greg
len <- length(x)
gndx <- x >= private$gap & !is.na(x)
if (any(gndx)) greg <- .gregorian_offset2date(x[gndx] + rd)
else greg <- data.frame(year = integer(), month = integer(), day = integer())
jndx <- x < private$gap & !is.na(x)
if (any(jndx)) juli <- .julian_offset2date(x[jndx] + rd)
else juli <- data.frame(year = integer(), month = integer(), day = integer())
yr <- mon <- day <- rep(NA_integer_, len)
yr[gndx] <- greg$year; yr[jndx] <- juli$year
mon[gndx] <- greg$month; mon[jndx] <- juli$month
day[gndx] <- greg$day; day[jndx] <- juli$day
data.frame(year = yr, month = mon, day = day)
}
)
)
|