1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
#' @title Coordinated Universal Time CF calendar
#'
#' @description This class represents a calendar based on the Coordinated
#' Universal Time. Validity is from 1972 onwards, with dates represented using
#' the Gregorian calendar, up to the present (so future timestamps are not
#' allowed). Leap seconds are considered in all calculations. Also, time zone
#' information is irrelevant and may not be given.
#'
#' In general, the calendar should use a unit of time of a second. Minute,
#' hour and day are allowed but discouraged. Month and year as time unit are
#' not allowed as there is no practical way to maintain leap second accuracy.
#'
#' @aliases CFCalendarUTC
#' @docType class
CFCalendarUTC <- R6::R6Class("CFCalendarUTC",
inherit = CFCalendarProleptic,
private = list(
# Leap days in various incarnations. More will be added in initialize().
leapdays = data.frame(
year = c(1972L, 1972L, 1973L, 1974L, 1975L, 1976L, 1977L, 1978L, 1979L,
1981L, 1982L, 1983L, 1985L, 1987L, 1989L, 1990L, 1992L, 1993L,
1994L, 1995L, 1997L, 1998L, 2005L, 2008L, 2012L, 2015L, 2016L),
month = c(6L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 6L, 6L, 6L, 6L,
12L, 12L, 12L, 6L, 6L, 6L, 12L, 6L, 12L, 12L, 12L, 6L, 6L, 12L),
day = c(30L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 30L, 30L, 30L, 30L,
31L, 31L, 31L, 30L, 30L, 30L, 31L, 30L, 31L, 31L, 31L, 30L, 30L, 31L),
compound = c(19720630L, 19721231L, 19731231L, 19741231L, 19751231L, 19761231L,
19771231L, 19781231L, 19791231L, 19810630L, 19820630L, 19830630L,
19850630L, 19871231L, 19891231L, 19901231L, 19920630L, 19930630L,
19940630L, 19951231L, 19970630L, 19981231L, 20051231L, 20081231L,
20120630L, 20150630L, 20161231L),
epochdays = c(182L, 366L, 731L, 1096L, 1461L, 1827L, 2192L, 2557L, 2922L,
3469L, 3834L, 4199L, 4930L, 5844L, 6575L, 6940L, 7487L, 7852L,
8217L, 8766L, 9313L, 9862L, 12419L, 13515L, 14792L, 15887L, 16437L)
),
# Offset of the epoch from the origin, in calendar units. Set in initialize().
epoch = 0,
# Rata Die of the epoch.
epoch_rd = 719893L,
# Number of leap seconds applied to the origin of self. Set in initialize().
origin_leapsecs = 0L,
# Check if rows in a data.frame with seconds >= 60 are days when a leap
# second was applied. Argument `cap` comes from method parse(). If not,
# values in that row are set to `NA`.
check_leap_seconds = function(cap) {
# There will always be at least one row with 60 seconds or this method
# would not be called
leap_ndx <- which(cap$second >= 60)
tst <- cap[leap_ndx, ]
not2359 <- tst$hour != 23L | tst$minute != 59L
tst <- tst$year * 10000L + tst$month * 100L + tst$day
bad <- !(tst %in% private$leapdays$compound)
cap[leap_ndx[bad | not2359], ] <- rep(NA, 7)
cap
}
),
public = list(
#' @description Create a new CF UTC calendar.
#' @param nm The name of the calendar. This must be "utc".
#' @param definition The string that defines the units and the origin, as
#' per the CF Metadata Conventions.
initialize = function(nm, definition) {
super$initialize(nm, definition)
if (self$unit > 4L)
stop("Unit for an UTC calendar cannot be 'month' or 'year'.", call. = FALSE) # nocov
# How many leap seconds have been applied to the origin?
private$origin_leapsecs <- findInterval(self$origin$year * 10000L +
self$origin$month * 100L +
self$origin$day, private$leapdays$compound, left.open = TRUE)
# Offset of the epoch from the origin
private$epoch <- self$parse("1972-01-01")$offset
# Add offsets in self calendar units of the leap seconds
leapdates <- as.Date(paste(private$leapdays$year, private$leapdays$month, private$leapdays$day, sep = "-"))
private$leapdays$seconds <-
as.integer(c(unclass(difftime(leapdates, as.Date("1972-01-01"), units = "secs"))) +
CFt$units$per_day[1L] + (1:27))
},
#' @description Indicate which of the supplied dates are valid.
#' @param ymd `data.frame` with dates parsed into their parts in columns
#' `year`, `month` and `day`. Any other columns are disregarded.
#' @return Logical vector with the same length as argument `ymd` has rows
#' with `TRUE` for valid days and `FALSE` for invalid days, or `NA` where
#' the row in argument `ymd` has `NA` values.
valid_days = function(ymd) {
nw <- as.POSIXct(Sys.Date(), tz = "UTC")
yr <- as.integer(substr(nw, 1, 4))
mon <- as.integer(substr(nw, 6, 7))
dt <- as.integer(substr(nw, 9, 10))
super$valid_days(ymd) & ymd$year >= 1972L &
(ymd$year < yr | (ymd$year == yr & (ymd$month < mon |
(ymd$month == mon & ymd$day <= dt))))
},
#' @description Parsing a vector of date-time character strings into parts.
#' This includes any leap seconds. Time zone indications are not allowed.
#' @param d character. A character vector of date-times.
#' @return A `data.frame` with columns year, month, day, hour, minute,
#' second, time zone, and offset. Invalid input data will appear as `NA`.
#' Note that the time zone is always "+0000" and is included to maintain
#' compatibility with results from other calendars.
parse = function(d) {
# Parsers
# These parsers are specific to UTC, i.e. starting in 1972 and up to the
# current year, and a possible leap second as value 60.
# UDUNITS broken timestamp definition, with some changes
# broken_timestamp {broken_date}({space|T}+{broken_clock})? -- T not in definition but present in lexer code
# broken_date {year}-{month}(-{day})?
# year [+-]?[0-9]{1,4}
# month 0?[1-9]|1[0-2]
# day 0?[1-9]|[1-2][0-9]|30|31
# broken_clock {hour}:{minute}(:{second})?
# hour [0-1]?[0-9]|2[0-3] -- sign on hour not allowed
# minute [0-5]?[0-9]
# second 60|{minute}?
# fractional part (\.[0-9]*)?
broken <- paste0(
"^", # anchor string at start
"([+-]?[0-9]{1,4})", # year, with optional sign
"-(0?[1-9]|1[012])", # month
"(?:-(0?[1-9]|[12][0-9]|3[01]))?", # day, optional
"(?:[T ]", # if a time is following, separate with a single whitespace character or a "T"
"([01]?[0-9]|2[0-3])", # hour
":([0-5]?[0-9])", # minute
"(?::([0-6]?[0-9]))?", # second, optional
"(?:\\.([0-9]*))?", # optional fractional part of the smallest specified unit
")?", # close optional time capture group
"(?:\\s", # if a time zone offset is following, separate with a single whitespace character
"([+-])?([01]?[0-9]|2[0-3])", # tz hour, with optional sign
"(?::(00|15|30|45))?", # optional tz minute, only 4 possible values
")?", # close optional timezone capture group
"$" # anchor string at end
)
iso8601 <- paste0(
"^",
"([0-9]{4})",
"-(0[1-9]|1[012])",
"-(0[1-9]|[12][0-9]|3[01])?",
"(?:",
"[T ]([01][0-9]|2[0-3])",
"(?::([0-5][0-9]))?",
"(?::([0-6][0-9]))?",
"(?:[\\.,]([0-9]*))?",
")?",
"(?:([Z+-])([01][0-9]|2[0-3])?(?::(00|15|30|45))?", ## FIXME: Z?, smaller number of captures
")?$"
)
# UDUNITS packed timestamp definition - NOT YET USED
# packed_timestamp {packed_date}({space|T}+{packed_clock})? -- T and space only allowed in packed time follows
# packed_date {year}({month}{day}?)? -- must be YYYYMMDD or else format is ambiguous, as per lexer code
# packed_clock {hour}({minute}{second}?)? -- must be HHMMSS to be unambiguous
# packed <- stringi::stri_join(
# "^", # anchor string at start
# "([+-]?[0-9]{4})", # year, with optional sign
# "(0[1-9]|1[012])?", # month, optional
# "(0[1-9]|[12][0-9]|3[01])?", # day, optional
# "(?:[T,\\s]", # if a time is following, separate with a single whitespace character or a "T"
# "([01][0-9]|2[0-3])?", # hour
# "([0-5][0-9])?", # minute, optional
# "([0-5]?[0-9](?:\\.[0-9]*)?)?", # second, optional, with optional fractional part
# ")?", # close optional time capture group
# "$" # anchor string at end
# )
parse <- data.frame(year = integer(), month = integer(), day = integer(),
hour = integer(), minute = integer(), second = numeric(), frac = character(),
tz_sign = character(), tz_hour = character(), tz_min = character())
cap <- utils::strcapture(iso8601, d, parse)
missing <- which(is.na(cap$year))
if (length(missing) > 0L)
cap[missing,] <- utils::strcapture(broken, d[missing], parse)
# Assign any fraction to the appropriate time part
cap$frac[is.na(cap$frac)] <- "0"
frac <- as.numeric(paste0("0.", cap$frac))
if (sum(frac) > 0) {
ndx <- which(!(is.na(cap$second)) & frac > 0)
if (length(ndx) > 0L) cap$second[ndx] <- cap$second[ndx] + frac[ndx]
ndx <- which(!(is.na(cap$minute)) & is.na(cap$second) & frac > 0)
if (length(ndx) > 0L) cap$second[ndx] <- 60L * frac[ndx]
ndx <- which(!(is.na(cap$hour)) & is.na(cap$minute) & frac > 0)
if (length(ndx) > 0L) {
secs <- 3600 * frac
cap$minute[ndx] <- secs[ndx] %/% 60
cap$second[ndx] <- secs[ndx] %% 60
}
}
cap$frac <- NULL
# Convert NA time parts to 0 - in CF default time is 00:00:00 when not specified
cap$hour[is.na(cap$hour)] <- 0L
cap$minute[is.na(cap$minute)] <- 0L
cap$second[is.na(cap$second)] <- 0L
# Set timezone to 00:00 to align cap data.frame with other calendars
cap$tz_sign <- cap$tz_hour <- cap$tz_min <- NULL
cap$tz <- "+0000"
# Set optional date parts to 1 if not specified
cap$month[is.na(cap$month)] <- 1L
cap$day[is.na(cap$day)] <- 1L
# Check date validity
invalid <- !self$valid_days(cap)
invalid[is.na(invalid)] <- TRUE
if (sum(invalid) > 0L) cap[invalid,] <- rep(NA, 7)
# Check that any supplied leap seconds coincide with official leap seconds
if (any(cap$second >= 60, na.rm = TRUE))
cap <- private$check_leap_seconds(cap)
# Calculate offsets
if (nrow(self$origin) == 0L) { # if there's no origin yet, don't calculate offsets
cap$offset <- rep(0, nrow(cap)) # this happens, f.i., when a CFCalendar is created
} else {
days <- self$date2offset(cap)
chkdays <- cap$year * 10000L + cap$month * 100L + cap$day
leapsecs <- findInterval(chkdays, private$leapdays$compound, left.open = TRUE) - private$origin_leapsecs
cap$offset <- round((days * 86400 + (cap$hour - self$origin$hour[1]) * 3600 +
(cap$minute - self$origin$minute[1]) * 60 +
cap$second - self$origin$second + leapsecs) /
CFt$units$seconds[self$unit], 9)
}
cap
},
#' @description Decompose a vector of offsets, in units of the calendar, to
#' their timestamp values. This adds a specified amount of time to the
#' origin of a `CFTime` object.
#' @param offsets Vector of numeric offsets to add to the origin of the
#' calendar.
#' @return A `data.frame` with columns for the timestamp elements and as
#' many rows as there are offsets.
offsets2time = function(offsets) {
len <- length(offsets)
if(len == 0L)
return(data.frame(year = integer(), month = integer(), day = integer(),
hour = integer(), minute = integer(), second = numeric(),
tz = character(), offset = numeric()))
# Base offsets on epoch, in seconds
off <- (offsets - private$epoch) * CFt$units$seconds[self$unit]
ndx <- findInterval(off, private$leapdays$seconds)
remainder <- off - ifelse(ndx > 0L, private$leapdays$seconds[ndx], 0L)
secs <- mins <- hrs <- days <- vector("numeric", len)
frac <- rep(0, len)
leap <- ndx < 27L & round(private$leapdays$seconds[ndx + 1L] - off, 5) <= 1L
if (sum(leap) > 0L) {
secs[leap] <- 60
mins[leap] <- 59
hrs[leap] <- 23
days[leap] <- ifelse(ndx[leap] == 0L,
private$leapdays$epochdays[1L],
private$leapdays$epochdays[ndx + 1L] - private$leapdays$epochdays[ndx]) - 1L
}
not_leap <- !leap
if (sum(not_leap) > 0L) {
# Convert remainder to time parts, no leap seconds anymore
days[not_leap] <- remainder[not_leap] %/% 86400L # overflow days
secs[not_leap] <- round(remainder[not_leap] %% 86400L, 3L) # round down to milli-seconds to avoid errors
#frac[not_leap] <- secs[not_leap] %% 1
#secs[not_leap] <- secs[not_leap] %/% 1
# Time elements for output
hrs[not_leap] <- secs[not_leap] %/% 3600L
mins[not_leap] <- (secs[not_leap] %% 3600L) %/% 60L
secs[not_leap] <- secs[not_leap] %% 60L
}
# Now add days using the calendar
epoch_days <- ifelse(ndx > 0L, private$leapdays$epochdays[ndx], 0L)
out <- if (any(days != 0L))
.gregorian_offset2date(as.integer(days) + private$epoch_rd + epoch_days)
else
data.frame(year = rep(self$origin$year, len),
month = rep(self$origin$month, len),
day = rep(self$origin$day, len))
# Put it all back together again
out$hour <- as.integer(hrs)
out$minute <- as.integer(mins)
out$second <- secs
#if (sum(frac) > 0)
# out$second <- out$second + frac
out$tz <- rep("+0000", len)
out$offset <- offsets
out
}
)
)
|