1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#############################################################
# #
# Original Splus: Ulric Lund #
# E-mail: ulund@calpoly.edu #
# #
#############################################################
#############################################################
# #
# watson.test function #
# Author: Claudio Agostinelli #
# E-mail: claudio.agostinelli@unive.it #
# Date: April, 18, 2016 #
# Version: 0.3-2 #
# #
# Copyright (C) 2016 Claudio Agostinelli #
# #
#############################################################
watson.test <- function(x, alpha = 0, dist = c("uniform", "vonmises")) {
# Handling missing values
x <- na.omit(x)
if (length(x)==0) {
warning("No observations (at least after removing missing values)")
return(NULL)
}
dist <- match.arg(dist)
x <- conversion.circular(x, units="radians", zero=0, rotation="counter", modulo="2pi")
attr(x, "circularp") <- attr(x, "class") <- NULL
if (!any(c(0, 0.01, 0.025, 0.05, 0.1)==alpha))
stop("'alpha' must be one of the following values: 0, 0.01, 0.025, 0.05, 0.10")
result <- WatsonTestRad(x, dist)
result$call <- match.call()
result$n <- length(x)
result$alpha <- alpha
result$dist <- dist
class(result) <-"watson.test"
return(result)
}
WatsonTestRad <- function(x, dist) {
n <- length(x)
if (dist == "uniform") {
u <- sort(x)/(2 * pi)
u.bar <- mean.default(u)
i <- 1:n
sum.terms <- (u - u.bar - (2 * i - 1)/(2 * n) + 0.5)^2
u2 <- sum(sum.terms) + 1/(12 * n)
u2 <- (u2 - 0.1/n + 0.1/(n^2)) * (1 + 0.8/n)
result <- list(statistic=u2, row=NA)
} else {
res <- MlevonmisesRad(x, bias=FALSE)
mu.hat <- res[1]
kappa.hat <- res[4]
x <- (x - mu.hat) %% (2 * pi)
x <- matrix(x, ncol = 1)
z <- apply(x, 1, PvonmisesRad, mu=0, kappa=kappa.hat, tol=1e-020)
z <- sort(z)
z.bar <- mean.default(z)
i <- 1:n
sum.terms <- (z - (2 * i - 1)/(2 * n))^2
Value <- sum(sum.terms) - n * (z.bar - 0.5)^2 + 1/(12 * n)
if (kappa.hat < 0.25)
row <- 1
else if (kappa.hat < 0.75)
row <- 2
else if (kappa.hat < 1.25)
row <- 3
else if (kappa.hat < 1.75)
row <- 4
else if (kappa.hat < 3)
row <- 5
else if (kappa.hat < 5)
row <- 6
else row <- 7
result <- list(statistic=Value, row=row)
}
return(result)
}
#############################################################
# #
# print.watson.test function #
# Author: Claudio Agostinelli #
# E-mail: claudio@unive.it #
# Date: November, 19, 2003 #
# Version: 0.1-1 #
# #
# Copyright (C) 2003 Claudio Agostinelli #
# #
#############################################################
print.watson.test <- function(x, digits=4, ...) {
dist <- x$dist
n <- x$n
alpha <- x$alpha
if (dist == "uniform") {
u2 <- x$statistic
cat("\n", " Watson's Test for Circular Uniformity", "\n", "\n")
crits <- c(99, 0.267, 0.221, 0.187, 0.152)
if (n < 8) {
warning("Total Sample Size < 8: Results may not be valid", "\n", "\n")
}
cat("Test Statistic:", round(u2, digits=digits), "\n")
if (alpha == 0) {
if (u2 > 0.267)
cat("P-value < 0.01", "\n", "\n")
else if (u2 > 0.221)
cat("0.01 < P-value < 0.025", "\n", "\n")
else if (u2 > 0.187)
cat("0.025 < P-value < 0.05", "\n", "\n")
else if (u2 > 0.152)
cat("0.05 < P-value < 0.10", "\n", "\n")
else cat("P-value > 0.10", "\n", "\n")
} else {
index <- (1:5)[alpha == c(0, 0.01, 0.025, 0.05, 0.1)]
Critical <- crits[index]
if (u2 > Critical)
Reject <- "Reject Null Hypothesis"
else Reject <- "Do Not Reject Null Hypothesis"
cat("Level", alpha, "Critical Value:", round(Critical, digits=digits), "\n")
cat(Reject, "\n\n")
}
} else if (dist=="vonmises") {
Value <- x$statistic
row <- x$row
cat("\n", " Watson's Test for the von Mises Distribution \n\n")
u2.crits <- cbind(c(0, 0.5, 1, 1.5, 2, 4, 100), c(0.052, 0.056, 0.066, 0.077, 0.084, 0.093, 0.096), c(0.061, 0.066, 0.079, 0.092, 0.101, 0.113, 0.117), c(0.081, 0.09, 0.11, 0.128, 0.142, 0.158, 0.164))
if (alpha != 0) {
if (alpha == 0.1)
col <- 2
else if (alpha == 0.05)
col <- 3
else if (alpha == 0.01)
col <- 4
Critical <- u2.crits[row, col]
if (Value > Critical)
Reject <- "Reject Null Hypothesis"
else Reject <- "Do Not Reject Null Hypothesis"
cat("Test Statistic:", round(Value, digits=digits), "\n")
cat("Level", alpha, "Critical Value:", round(Critical, digits=digits), "\n")
cat(Reject, "\n\n")
} else {
cat("Test Statistic:", round(Value, digits=digits), "\n")
if (Value < u2.crits[row, 2])
cat("P-value > 0.10", "\n", "\n")
else if ((Value >= u2.crits[row, 2]) && (Value < u2.crits[row, 3]))
cat("0.05 < P-value < 0.10", "\n", "\n")
else if ((Value >= u2.crits[row, 3]) && (Value < u2.crits[row, 4]))
cat("0.01 < P-value < 0.05", "\n", "\n")
else cat("P-value < 0.01", "\n", "\n")
}
}
invisible(x)
}
|