1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
\name{GenVonMises}
\alias{dgenvonmises}
\alias{genvonmises}
\title{Generalized Von Mises Density Function}
\description{
Density for the Generalized von Mises circular distribution.
}
\usage{dgenvonmises(x, mu1, mu2, kappa1, kappa2)}
\arguments{
\item{x}{a vector. The object is coerced to class \code{\link{circular}}.}
\item{mu1}{principal direction of the distribution. The object is coerced to class \code{\link{circular}}.}
\item{mu2}{secondary direction parameter. The object is coerced to class \code{\link{circular}}.}
\item{kappa1}{non-negative numeric parameter of the distribution.}
\item{kappa2}{non-negative numeric parameter of the distribution.}
}
\details{The Generalized von Mises distribution has density
\deqn{
f(x)=\frac1{2\pi G_0(\delta,\kappa_1,\kappa_2)}
\exp\{\kappa_1 \cos(x-\mu_1) + \kappa_2 \cos2(x-\mu_2)\},
}{%
f(x)=exp[\kappa_1 \cos(x-\mu_1) + \kappa_2 \cos{2(x-\mu_2) }] / [2 \pi G_0(\delta,\kappa_1,\kappa_2)],
}
for \eqn{0 \le x < 2\pi}{0 <= x < 2 \pi}, where \eqn{\delta=(\mu_1-\mu_2)} and \eqn{G_0} is the normalizing constant.
}
\value{The density}
\references{Gatto , R. & Jammalamadaka , S.R. (2007). The generalized von Mises distribution. Statistical Methodology 4, 341-353.}
\author{Federico Rotolo}
\examples{
ff <- function(x) dgenvonmises(x, mu1=circular(5*pi/4), mu2=circular(pi/4), kappa1=.3, kappa2=1)
curve.circular(ff, join=TRUE, xlim=c(-1, 1), ylim=c(-1.2, 1.2),
main="Density of a Generalized von Mises Distribution",
xlab=expression(paste(mu,"1=5/4",pi,", ",mu2,"=",pi/4,", ",kappa,"1=0.3, ",kappa,"2=1"))
)
}
\keyword{distribution}
\keyword{circle}
\keyword{circular}
\keyword{vonMises}
|