1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
|
\name{median.circular}
\alias{median.circular}
\title{
Median Direction
}
\description{
Sample median direction for a vector of circular data
}
\usage{
\method{median}{circular}(x, na.rm = FALSE, ...)
}
\arguments{
\item{x}{a vector. The object is coerced to class
\code{\link{circular}}.
}
\item{na.rm}{logical, indicating if \code{\link{NA}}'s should be
omitted.
}
\item{\dots}{NotYetUsed.}
}
\details{
The Definition in equations 2.32 & 2.33 from N.I. Fisher's 'Statistical Analysis of Circular Data', Cambridge Univ. Press 1993. is implemented.
Since version 0.4-4, the algorithm (not the definition) for the
calculation of the median is changed. For a measure of spread associated to the circular median use function \code{\link{meandeviation}}.
}
\value{
A scalar with the circular median value.
The median is returned as an object of class \code{circular}.
}
\references{
N.I. Fisher (1993) Statistical Analysis of Circular Data, Cambridge
University Press.
R.Y. Liu and K. Singh (1992) Ordering Directional Data: Concepts of
Data Depth on Circles and Spheres, The Annals of Statistics, vol. 20,
n. 3, 1468-1484.
}
\author{
Claudio Agostinelli and Alessandro Gagliardi
}
\seealso{
\code{\link{meandeviation}}, \code{\link{mean.circular}}, \code{\link{var.circular}}, \code{\link{summary.circular}}, \code{\link{rho.circular}} and \code{\link{medianHL.circular}}.
}
\examples{
# Compute the median direction of a random sample of observations.
x <- circular(runif(50, circular(0), pi))
median(x) #only the median is returned
meandeviation(x) #mean deviation is reported
}
\keyword{univar}
|